Epoxyeicosatrienoic acids (EETs): metabolism and biochemical function

被引:498
作者
Spector, AA
Fang, X
Snyder, GD
Weintraub, NL
机构
[1] Univ Iowa, Carver Coll Med, Dept Biochem, Iowa City, IA 52242 USA
[2] Univ Iowa, Carver Coll Med, Dept Internal Med, Iowa City, IA 52242 USA
关键词
EET; DHET; cytochrome P450; phospholipid; epoxide hydrolase; beta-oxidation; chain-elongation; ion channels; receptor; EDHF; inflammation;
D O I
10.1016/S0163-7827(03)00049-3
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Epoxyeicosatrienoic acids (EETs), which are synthesized from arachidonic acid by cytochrome P450 epoxygenases, function primarily as autocrine and paracrine effectors in the cardiovascular system and kidney. They modulate ion transport and gene expression, producing vasorelaxation as well as antiinflammatory and pro-fibrinolytic effects. EETs are incorporated into the sn-2 position of phospholipids and are rapidly mobilized when a cell is treated with a Ca2+ ionophore, suggesting that they may play a role in phospholipid-mediated signal transduction processes. Soluble epoxide hydrolase (sEH) converts EETs to dihydroxyeicosatrienoic acids (DHETs), and inhibition of sEH is a potential approach for enhancing the biological activity of EETs. EETs also undergo chain-elongation and beta-oxidation, and the accumulation of partial beta-oxidation products increases when sEH is inhibited. Some functional effects of EETs occur through activation of either the guanine nucleotide binding protein Galphas or the Src signal transduction pathways, suggesting that EETs act by binding to membrane receptors. However, other evidence indicates that the modulation of gene expression occurs through an intracellular action of EETs. Because of the diversity of biochemical and functional responses produced by EETs, it is doubtful that a single mechanism or signal transduction pathway can account for all of their actions. (C) 2003 Elsevier Ltd. All rights reserved.
引用
收藏
页码:55 / 90
页数:36
相关论文
共 172 条
[1]   Binding of alkylurea inhibitors to epoxide hydrolase implicates active site tyrosines in substrate activation [J].
Argiriadi, MA ;
Morisseau, C ;
Goodrow, MH ;
Dowdy, DL ;
Hammock, BD ;
Christianson, DW .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (20) :15265-15270
[2]   Detoxification of environmental mutagens and carcinogens: Structure, mechanism, and evolution of liver epoxide hydrolase [J].
Argiriadi, MA ;
Morisseau, C ;
Hammock, BD ;
Christianson, DW .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (19) :10637-10642
[3]  
ASHBY B, 1994, RECEPTOR, V4, P31
[4]   GENE EVOLUTION OF EPOXIDE HYDROLASES AND RECOMMENDED NOMENCLATURE [J].
BEETHAM, JK ;
GRANT, D ;
ARAND, M ;
GARBARINO, J ;
KIYOSUE, T ;
PINOT, F ;
OESCH, F ;
BELKNAP, WR ;
SHINOZAKI, K ;
HAMMOCK, BD .
DNA AND CELL BIOLOGY, 1995, 14 (01) :61-71
[5]   CDNA CLONING AND EXPRESSION OF A SOLUBLE EPOXIDE HYDROLASE FROM HUMAN LIVER [J].
BEETHAM, JK ;
TIAN, TG ;
HAMMOCK, BD .
ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 1993, 305 (01) :197-201
[6]  
BERNSTROM K, 1992, J BIOL CHEM, V267, P3686
[7]   MECHANISM OF SOLUBLE EPOXIDE HYDROLASE - FORMATION OF AN ALPHA-HYDROXY ESTER-ENZYME INTERMEDIATE THROUGH ASP-333 [J].
BORHAN, B ;
JONES, AD ;
PINOT, F ;
GRANT, DF ;
KURTH, MJ ;
HAMMOCK, BD .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (45) :26923-26930
[8]   Arachidonic acid as a bioactive molecule [J].
Brash, AR .
JOURNAL OF CLINICAL INVESTIGATION, 2001, 107 (11) :1339-1345
[9]   G protein-coupled prostanoid receptors and the kidney [J].
Bryer, MD ;
Breyer, RM .
ANNUAL REVIEW OF PHYSIOLOGY, 2001, 63 :579-605
[10]   New role for epoxyeicosatrienoic acids as anti-inflammatory mediators [J].
Campbell, WB .
TRENDS IN PHARMACOLOGICAL SCIENCES, 2000, 21 (04) :125-127