Interface modifications in solid-state dye-sensitized TiO2 solar cells

被引:2
作者
Peng, B [1 ]
Peter, K [1 ]
Wietasch, H [1 ]
Thelakkat, M [1 ]
机构
[1] Univ Bayreuth, D-95440 Bayreuth, Germany
来源
ORGANIC PHOTOVOLTAICS IV | 2004年 / 5215卷
关键词
dye-sensitized; TiO2 solar cell; spray pyrolysis; bifunctional materials; ruthenium-triphenylamine dyes;
D O I
10.1117/12.509608
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
The concept of solid-state dye-sensitized TiO2 solar cell in which the hole transport medium is an organic semiconductor is critically studied by examining the anode-TiO2 interface and dye-hole conductor interface. The importance and the role of a compact hole-blocking TiO2 layer in between the anode and the mesoporous layer is extensively studied by preparing this layer by spray pyrolysis using an automated procedure which guarantees reproducibility in obtaining constant thickness and quality of this crucial layer as seen in the current-voltage characteristics of the solar cells. To characterize the rectifying behavior of the blocking layer, cells with the structure, fluorinated tin oxide(FTO)/blocking TiO2 layer/hole conductor/Au, were prepared and their current (I)-voltage (U) properties were investigated. Solid state solar cells were also prepared with different blocking layer thicknesses and their photovoltaic properties were investigated in order to study the influence of the blocking layer thickness on solar cell performance. In order to improve the dye-hole conductor interface, novel multifunctional molecules carrying dye units and triphenylamine moieties were synthesized and their influence as interface modifiers were studied. This interface modification results in doubling the external quantum efficiency of current conversion via improved charge transfer at the dye-hole conductor interface. Moreover, the recombination processes at this interface is drastically suppressed which leads to higher open circuit voltage and consequently higher power conversion efficiencies.
引用
收藏
页码:60 / 70
页数:11
相关论文
共 34 条
[1]   Charge separation in solid-state dye-sensitized heterojunction solar cells [J].
Bach, U ;
Tachibana, Y ;
Moser, JE ;
Haque, SA ;
Durrant, JR ;
Grätzel, M ;
Klug, DR .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1999, 121 (32) :7445-7446
[2]   Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies [J].
Bach, U ;
Lupo, D ;
Comte, P ;
Moser, JE ;
Weissörtel, F ;
Salbeck, J ;
Spreitzer, H ;
Grätzel, M .
NATURE, 1998, 395 (6702) :583-585
[3]  
Bach U., 2000, THESIS EPFL LAUSANNE
[4]   CHARGE TRANSPORT IN DISORDERED ORGANIC PHOTOCONDUCTORS - A MONTE-CARLO SIMULATION STUDY [J].
BASSLER, H .
PHYSICA STATUS SOLIDI B-BASIC RESEARCH, 1993, 175 (01) :15-56
[5]   Nature of photovoltaic action in dye-sensitized solar cells [J].
Cahen, D ;
Hodes, G ;
Grätzel, M ;
Guillemoles, JF ;
Riess, I .
JOURNAL OF PHYSICAL CHEMISTRY B, 2000, 104 (09) :2053-2059
[6]   A SOLID-STATE, DYE-SENSITIZED PHOTOELECTROCHEMICAL CELL [J].
CAO, F ;
OSKAM, G ;
SEARSON, PC .
JOURNAL OF PHYSICAL CHEMISTRY, 1995, 99 (47) :17071-17073
[7]   Novel hybrid solar cells consisting of inorganic nanoparticles and an organic hole transport material [J].
Hagen, J ;
Schaffrath, W ;
Otschik, P ;
Fink, R ;
Bacher, A ;
Schmidt, HW ;
Haarer, D .
SYNTHETIC METALS, 1997, 89 (03) :215-220
[8]   Molecular photovoltaics [J].
Hagfeldt, A ;
Grätzel, M .
ACCOUNTS OF CHEMICAL RESEARCH, 2000, 33 (05) :269-277
[9]   LIGHT-INDUCED REDOX REACTIONS IN NANOCRYSTALLINE SYSTEMS [J].
HAGFELDT, A ;
GRATZEL, M .
CHEMICAL REVIEWS, 1995, 95 (01) :49-68
[10]   SEMICONDUCTOR ELECTRODES .10. PHOTOELECTROCHEMICAL BEHAVIOR OF SEVERAL POLYCRYSTALLINE METAL-OXIDE ELECTRODES IN AQUEOUS-SOLUTIONS [J].
HARDEE, KL ;
BARD, AJ .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1977, 124 (02) :215-224