Molecular engineering of silk-elastinlike polymers for matrix-mediated gene delivery: Biosynthesis and characterization

被引:89
作者
Haider, Mohamed
Leung, Vivian
Ferrari, Franco [2 ]
Crissman, John [2 ]
Powell, James [2 ]
Cappello, Joseph [2 ]
Ghandehari, Hamidreza [1 ,3 ]
机构
[1] Univ Maryland, Bioengn Program, Baltimore, MD 21201 USA
[2] Protein Polymer Technol Inc, San Diego, CA 92121 USA
[3] Univ Maryland, Sch Pharm, Dept Pharmaceut Sci, Greenebaum Canc Ctr, Baltimore, MD 21201 USA
关键词
genetically engineered polymers; silk-elastinlike protein polymers; gene delivery; hydrogels; drug delivery;
D O I
10.1021/mp049906s
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
The unique advantage of genetic engineering techniques for the design and development of polymers for controlled gene delivery lies in exquisite control over polymer structure. In this article we report the biosynthesis and characterization of a series of new silk-elastinlike protein polymers (SELPs), namely, SELP415K, with larger elastin blocks per monomer unit than SELP47K previously studied for matrix-mediated gene delivery. A new cloning strategy was used, where a block of eight elastin units (8E) was integrated into the existing DNA sequence of SELP47K monomer genes using appropriate restriction endonuclease recognition sites. Following random multimerization, multimer gene segments of desired size were selected, expressed, and purified on Ni-agarose columns. The molecular weight and sequence composition of the purified SELPs were determined by MALDI-TOF and amino acid analysis, respectively. The influence of structural changes on the rheological properties of the polymers was investigated. In addition, hydrogel disks were prepared from 47K and 415K-8mer polymer solutions, and the effects of cure time and environmental conditions on the hydrogel equilibrium swelling ratio as a function of polymer composition were studied. DNA sequencing and agarose gel electrophoresis confirmed the successful cloning of the monomer gene segment of SELP415K consisting of 312 bp. Random concatemerization of SELP415K monomer gene segments resulted in a library of SELP415K multimer sequences of 6, 8, and 10 repeats respectively, each yielding a polymer with exact molecular weight and sequence. Rheometric measurements showed that both complex shear modulus (G*) and gelation point were influenced by polymer composition. Equilibrium swelling studies on hydrogel disks prepared from 47K and 415K-8mer polymer solutions showed that changes in polymer composition resulted in different gelation patterns and increased sensitivity toward changes in temperature and ionic strength but not pH. Together these results demonstrate the potential of recombinant techniques in engineering polymers with defined structures which allows the study of the structural parameters affecting matrix-mediated delivery of genes and bioactive agents.
引用
收藏
页码:139 / 150
页数:12
相关论文
共 32 条
[1]   Silk-based biomaterials [J].
Altman, GH ;
Diaz, F ;
Jakuba, C ;
Calabro, T ;
Horan, RL ;
Chen, JS ;
Lu, H ;
Richmond, J ;
Kaplan, DL .
BIOMATERIALS, 2003, 24 (03) :401-416
[2]   Solute diffusion within hydrogels. Mechanisms and models [J].
Amsden, B .
MACROMOLECULES, 1998, 31 (23) :8382-8395
[3]   DYNAMIC AND EQUILIBRIUM SWELLING BEHAVIOR OF PH-SENSITIVE HYDROGELS CONTAINING 2-HYDROXYETHYL METHACRYLATE [J].
BRANNONPEPPAS, L ;
PEPPAS, NA .
BIOMATERIALS, 1990, 11 (09) :635-644
[4]   CORRELATION BETWEEN MESH SIZE AND EQUILIBRIUM DEGREE OF SWELLING OF POLYMERIC NETWORKS [J].
CANAL, T ;
PEPPAS, NA .
JOURNAL OF BIOMEDICAL MATERIALS RESEARCH, 1989, 23 (10) :1183-1193
[5]   In-situ self-assembling protein polymer gel systems for administration, delivery, and release of drugs [J].
Cappello, J ;
Crissman, JW ;
Crissman, M ;
Ferrari, FA ;
Textor, G ;
Wallis, O ;
Whitledge, JR ;
Zhou, X ;
Burman, D ;
Aukerman, L ;
Stedronsky, ER .
JOURNAL OF CONTROLLED RELEASE, 1998, 53 (1-3) :105-117
[6]  
Cappello J., 1997, HDB BIODEGRADABLE PO, P387
[7]  
Cappello J., 1994, PLASTICS MICROBES, P35
[8]   Design of thermally responsive, recombinant polypeptide carriers for targeted drug delivery [J].
Chilkoti, A ;
Dreher, MR ;
Meyer, DE .
ADVANCED DRUG DELIVERY REVIEWS, 2002, 54 (08) :1093-1111
[9]   Swelling behavior of a genetically engineered silk-elastinlike protein polymer hydrogel [J].
Dinerman, AA ;
Cappello, J ;
Ghandehari, H ;
Hoag, SW .
BIOMATERIALS, 2002, 23 (21) :4203-4210
[10]   Solute diffusion in genetically engineered silk-elastinlike protein polymer hydrogels [J].
Dinerman, AA ;
Cappello, J ;
Ghandehari, H ;
Hoag, SW .
JOURNAL OF CONTROLLED RELEASE, 2002, 82 (2-3) :277-287