Double dissociation between serotonergic and dopaminergic modulation of medial prefrontal and orbitofrontal cortex during a test of impulsive choice

被引:208
作者
Winstanley, CA
Theobald, DEH
Dalley, JW
Cardinal, RN
Robbins, TW
机构
[1] Univ Texas, SW Med Ctr, Dept Psychiat, Dallas, TX 75390 USA
[2] Univ Cambridge, Dept Expt Psychol, Cambridge CB2 3EB, England
基金
英国医学研究理事会; 英国惠康基金;
关键词
delay discounting; dopamine; impulsivity; in vivo microdialysis; serotonin;
D O I
10.1093/cercor/bhi088
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Dysregulation of the prefrontal cortex (PFC) has been implicated in impulse control disorders, including attention deficit hyperactivity disorder. A growing body of evidence suggests that impulsivity is non-unitary in nature, and recent data indicate that the ventral and dorsal regions of the PFC are differentially involved in distinct aspects of impulsive behaviour, findings which may reflect differences in the monoaminergic regulation of these regions. In the current experiment, levels of dopamine, serotonin and their metabolites were measured in the medial PFC (n = 12) and orbitofrontal cortex (OFC) (n = 19) of rats using in vivo microdialysis during the delay-discounting model of impulsive choice, where impulsivity is defined as selection of small immediate over larger delayed rewards. Yoked groups were also dialysed to control for instrumental responding and reward delivery. Significant increases in 5-hydroxytryptamine efflux were observed in the mPFC, but not in the OFC, during task performance but not under yoked control conditions. In the OFC, 3,4-di-hydroxy-phenylocetic acid (DOPAC) levels increased in animals performing the task but not in yoked animals, whereas mPFC DOPAC levels increased in all subjects. These data suggest a double dissociation between serotonergic and dopaminergic modulation of impulsive decision-making within distinct areas of frontal cortex.
引用
收藏
页码:106 / 114
页数:9
相关论文
共 70 条
[1]  
[Anonymous], 1994, DESCARTES ERROR
[2]   The 5-HT1A receptor antagonist (S)-UH-301 augments the increase in extracellular concentrations of 5-HT in the frontal cortex produced by both acute and chronic treatment with citalopram [J].
Arborelius, L ;
Nomikos, GG ;
Hertel, P ;
Salmi, P ;
Grillner, P ;
Hook, BB ;
Hacksell, U ;
Svensson, TH .
NAUNYN-SCHMIEDEBERGS ARCHIVES OF PHARMACOLOGY, 1996, 353 (06) :630-640
[3]   Stop-signal inhibition disrupted by damage to right inferior frontal gyrus in humans [J].
Aron, AR ;
Fletcher, PC ;
Bullmore, ET ;
Sahakian, BJ ;
Robbins, TW .
NATURE NEUROSCIENCE, 2003, 6 (02) :115-116
[4]  
AUDET MA, 1989, J CHEM NEUROANAT, V2, P29
[5]   Emotion, decision making and the orbitofrontal cortex [J].
Bechara, A ;
Damasio, H ;
Damasio, AR .
CEREBRAL CORTEX, 2000, 10 (03) :295-307
[6]  
Bechara A, 1999, J NEUROSCI, V19, P5473
[7]   DOPAMINERGIC INNERVATION OF RAT PREFRONTAL CORTEX - FLUORESCENCE HISTOCHEMICAL STUDY [J].
BERGER, B ;
THIERRY, AM ;
TASSIN, JP ;
MOYNE, MA .
BRAIN RESEARCH, 1976, 106 (01) :133-145
[8]   Serotonin and tolerance to delay of reward in rats [J].
Bizot, JC ;
Le Bihan, C ;
Puech, AJ ;
Hamon, M ;
Thiébot, MH .
PSYCHOPHARMACOLOGY, 1999, 146 (04) :400-412
[9]   Atomoxetine increases extracellular levels of norepinephrine and dopamine in prefrontal cortex of rat: A potential mechanism for efficacy in Attention Deficit/Hyperactivity Disorder [J].
Bymaster, FP ;
Katner, JS ;
Nelson, DL ;
Hemrick-Luecke, SK ;
Threlkeld, PG ;
Heiligenstein, JH ;
Morin, SM ;
Gehlert, DR ;
Perry, KW .
NEUROPSYCHOPHARMACOLOGY, 2002, 27 (05) :699-711
[10]   BLOCKADE OF THE NORADRENALINE CARRIER INCREASES EXTRACELLULAR DOPAMINE CONCENTRATIONS IN THE PREFRONTAL CORTEX - EVIDENCE THAT DOPAMINE IS TAKEN UP INVIVO BY NORADRENERGIC TERMINALS [J].
CARBONI, E ;
TANDA, GL ;
FRAU, R ;
DICHIARA, G .
JOURNAL OF NEUROCHEMISTRY, 1990, 55 (03) :1067-1070