Three-dimensional rearrangements within inositol 1,4,5-trisphosphate receptor by calcium

被引:81
作者
Hamada, K
Terauchi, A
Mikoshiba, K
机构
[1] RIKEN, Inst Phys & Chem Res, Dev Neurobiol Lab, Brain Sci Inst, Wako, Saitama 3510198, Japan
[2] JST, ICORP, Calcium Oscillation Project, Minato Ku, Tokyo 1080071, Japan
[3] Univ Tokyo, Inst Med Sci, Div Mol Neurobiol, Dept Basic Med Sci,Minato Ku, Tokyo 1088639, Japan
关键词
D O I
10.1074/jbc.M309743200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Allosteric binding of calcium ion (Ca2+) to inositol 1,4,5-trisphosphate (IP3) receptor (IP3R) controls channel gating within IP3R. Here, we present biochemical and electron microscopic evidence of Ca2+-sensitive structural changes in the three-dimensional structure of type 1 IP3R (IP(3)R1). Low concentrations of Ca2+ and high concentrations of Sr2+ and Ba2+ were shown to be effective for the limited proteolysis of IP(3)R1, but Mg2+ had no effect on the proteolysis. The electron microscopy and the limited proteolysis consistently demonstrated that the effective concentration of Ca2+ for conformational changes in IP(3)R1 was <10(-7) M and that the IP3 scarcely affected the conformational states. The structure of IP(3)R1 without Ca2+, as reconstructed by three-dimensional electron microscopy, had a "mushroom-like" appearance consisting of a large square-shaped head and a small channel domain linked by four thin bridges. The projection image of the "head-to-head" assembly comprising two particles confirmed the mushroom-like side view. The "windmill-like" form of IP(3)R1 with Ca2+ also contains the four bridges connecting from the IP3-binding domain toward the channel domain. These data suggest that the Ca2+-specific conformational change structurally regulates the IP3-triggered channel opening within IP(3)R1.
引用
收藏
页码:52881 / 52889
页数:9
相关论文
共 66 条
[1]   Lateral inhibition of inositol 1,4,5-trisphosphate receptors by cytosolic Ca2+ [J].
Adkins, CE ;
Taylor, CW .
CURRENT BIOLOGY, 1999, 9 (19) :1115-1118
[2]   IRBIT, a novel inositol 1,4,5-trisphosphate (IP3) receptor-binding protein, is released from the IP3 receptor upon IP3 binding to the receptor [J].
Ando, H ;
Mizutani, A ;
Matsu-ura, T ;
Mikoshiba, K .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (12) :10602-10612
[3]   The versatility and universality of calcium signalling [J].
Berridge, MJ ;
Lipp, P ;
Bootman, MD .
NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2000, 1 (01) :11-21
[4]   Neuronal calcium signaling [J].
Berridge, MJ .
NEURON, 1998, 21 (01) :13-26
[5]   ATP MODULATES THE FUNCTION OF INOSITOL 1,4,5-TRISPHOSPHATE-GATED CHANNELS AT 2 SITES [J].
BEZPROZVANNY, I ;
EHRLICH, BE .
NEURON, 1993, 10 (06) :1175-1184
[6]   BELL-SHAPED CALCIUM-RESPONSE CURVES OF INS(1,4,5)P3-GATED AND CALCIUM-GATED CHANNELS FROM ENDOPLASMIC-RETICULUM OF CEREBELLUM [J].
BEZPROZVANNY, I ;
WATRAS, J ;
EHRLICH, BE .
NATURE, 1991, 351 (6329) :751-754
[7]   Direct association of ligand-binding and pore domains in homo- and heterotetrameric inositol 1,4,5-trisphosphate receptors [J].
Boehning, D ;
Joseph, SK .
EMBO JOURNAL, 2000, 19 (20) :5450-5459
[8]   Molecular determinants of ion permeation and selectivity in inositol 1,4,5-trisphosphate receptor Ca2+ channels [J].
Boehning, D ;
Mak, DOD ;
Foskett, JK ;
Joseph, SK .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (17) :13509-13512
[9]   Structure of the inositol 1,4,5-trisphosphate receptor binding core in complex with its ligand [J].
Bosanac, I ;
Alattia, JR ;
Mal, TK ;
Chan, J ;
Talarico, S ;
Tong, FK ;
Tong, KI ;
Yoshikawa, F ;
Furuichi, T ;
Iwai, M ;
Michikawa, T ;
Mikoshiba, K ;
Ikura, M .
NATURE, 2002, 420 (6916) :696-700
[10]   ISOLATION AND CHARACTERIZATION OF THE INOSITOL TRISPHOSPHATE RECEPTOR FROM SMOOTH-MUSCLE [J].
CHADWICK, CC ;
SAITO, A ;
FLEISCHER, S .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1990, 87 (06) :2132-2136