Trehalose metabolism in Arabidopsis:: occurrence of trehalose and molecular cloning and characterization of trehalose-6-phosphate synthase homologues

被引:103
作者
Vogel, G
Fiehn, O
Jean-Richard-dit-Bressel, L
Boller, T
Wiemken, A
Aeschbacher, RA
Wingler, A
机构
[1] Univ Basel, Inst Bot, CH-4056 Basel, Switzerland
[2] Max Planck Inst Mol Plant Physiol, D-14424 Potsdam, Germany
关键词
Arabidopsis; trehalose; trehalose-6-phosphate phosphatase; trehalose-6-phosphate synthase; yeast complementation;
D O I
10.1093/jexbot/52.362.1817
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Axenically grown Arabidopsis thaliana plants were analysed for the occurrence of trehalose. Using gas chromatography-mass spectrometry (GC-MS) analysis, trehalose was unambiguously identified in extracts from Arabidopsis inflorescences. In a variety of organisms, the synthesis of trehalose is catalysed by trehalose-6-phosphate synthase (TPS; EC 2.4.1.15) and trehalose-6-phosphate phosphatase (TPP; EC 3.1.3.12). Based on EST (expressed sequence tag) sequences, three full-length Arabidopsis cDNAs whose predicted protein sequences show extensive homologies to known TPS and TPP proteins were amplified by RACE-PCR. The expression of the corresponding genes, AtTPSA, AtTPSB and AtTPSC, and of the previously described TPS gene, AtTPS1, was analysed by quantitative RT-PCR. All of the genes were expressed in the rosette leaves, stems and flowers of Arabidopsis plants and, to a lower extent, in the roots. To study the role of the Arabidopsis genes, the AtTPSA and AtTPSC cDNAs were expressed in Saccharomyces cerevisiae mutants deficient in trehalose synthesis. In contrast to AtTPS1, expression of AtTPSA and AtTPSC in the tps1 mutant lacking TPS activity did not complement trehalose formation after heat shock or growth on glucose. In addition, no TPP function could be identified for AtTPSA and AtTPSC in complementation studies with the S. cerevisiae tps2 mutant lacking TPP activity. The results indicate that while AtTPS1 is involved in the formation of trehalose in Arabidopsis, some of the Arabidopsis genes with homologies to known TPS/TPP genes encode proteins lacking catalytic activity in trehalose synthesis.
引用
收藏
页码:1817 / 1826
页数:10
相关论文
共 35 条
[1]   COMPARISON OF FREE SUGARS IN GROWING DESICCATED PLANTS OF SELAGINELLA-LEPIDOPHYLLA [J].
ADAMS, RP ;
KENDALL, E ;
KARTHA, KK .
BIOCHEMICAL SYSTEMATICS AND ECOLOGY, 1990, 18 (2-3) :107-110
[2]   EFFECT OF VALIDAMYCINS ON GLYCOHYDROLASES OF RHIZOCTONIA-SOLANI [J].
ASANO, N ;
YAMAGUCHI, T ;
KAMEDA, Y ;
MATSUI, K .
JOURNAL OF ANTIBIOTICS, 1987, 40 (04) :526-532
[3]   CHARACTERIZATION OF THE 56-KDA SUBUNIT OF YEAST TREHALOSE-6-PHOSPHATE SYNTHASE AND CLONING OF ITS GENE REVEAL ITS IDENTITY WITH THE PRODUCT OF CIF1, A REGULATOR OF CARBON CATABOLITE INACTIVATION [J].
BELL, W ;
KLAASSEN, P ;
OHNACKER, M ;
BOLLER, T ;
HERWEIJER, M ;
SCHOPPINK, P ;
VANDERZEE, P ;
WIEMKEN, A .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 1992, 209 (03) :951-959
[4]   THE UNUSUAL SUGAR COMPOSITION IN LEAVES OF THE RESURRECTION PLANT MYROTHAMNUS-FLABELLIFOLIA [J].
BIANCHI, G ;
GAMBA, A ;
LIMIROLI, R ;
POZZI, N ;
ELSTER, R ;
SALAMINI, F ;
BARTELS, D .
PHYSIOLOGIA PLANTARUM, 1993, 87 (02) :223-226
[5]   Isolation and molecular characterization of the Arabidopsis TPS1 gene, encoding trehalose-6-phosphate synthase [J].
Blázquez, MA ;
Santos, E ;
Flores, CL ;
Martínez-Zapater, JM ;
Salinas, J ;
Gancedo, C .
PLANT JOURNAL, 1998, 13 (05) :685-689
[6]   PRESERVATION OF MEMBRANES IN ANHYDROBIOTIC ORGANISMS - THE ROLE OF TREHALOSE [J].
CROWE, JH ;
CROWE, LM ;
CHAPMAN, D .
SCIENCE, 1984, 223 (4637) :701-703
[7]  
DEVIRGILIO C, 1993, EUR J BIOCHEM, V212, P315
[8]   THE OCCURRENCE OF TREHALOSE IN THE LEAVES OF THE DESICCATION-TOLERANT ANGIOSPERM MYROTHAMNUS-FLABELLIFOLIUS WELW [J].
DRENNAN, PM ;
SMITH, MT ;
GOLDSWORTHY, D ;
VANSTADEN, J .
JOURNAL OF PLANT PHYSIOLOGY, 1993, 142 (04) :493-496
[9]  
Elbein A D, 1974, Adv Carbohydr Chem Biochem, V30, P227, DOI 10.1016/S0065-2318(08)60266-8
[10]   Identification of uncommon plant metabolites based on calculation of elemental compositions using gas chromatography and quadrupole mass spectrometry [J].
Fiehn, O ;
Kopka, J ;
Trethewey, RN ;
Willmitzer, L .
ANALYTICAL CHEMISTRY, 2000, 72 (15) :3573-3580