PLG microsphere size controls drug release rate through several competing factors

被引:188
作者
Berkland, C
Kim, K
Pack, DW [1 ]
机构
[1] Univ Illinois, Dept Chem & Biomol Engn, Urbana, IL 61801 USA
[2] Univ Illinois, Dept Elect & Comp Engn, Urbana, IL 61801 USA
关键词
controlled release; zero-order release; uniform microspheres; poly(lactide-co-glycolide); piroxicam;
D O I
10.1023/A:1024466407849
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Purpose. Although the rate of drug release from poly(D,L-lactide-co-glycolide) (PLG) microspheres is often modulated by changing fabrication conditions or materials, the specific factors directly controlling the release profiles are often unclear. We have fabricated uniform rhodamine- and piroxicam-containing microspheres, 10 to 100 mum in diameter, to better understand how microsphere size controls drug release. Methods. Drug distribution within the microspheres was examined using confocal fluorescence microscopy. The rate of polymer degradation was determined as the change in molecular weight, measured by gel permeation chromatography, during in vitro degradation experiments. Further, changes in the surface and interior morphology of the particles during in vitro degradation were investigated by scanning electron microscopy. Results. Microsphere size greatly affected drug distribution. Small (similar to10-mum) microspheres showed an essentially uniform drug distribution. Larger (similar to100-mum) microspheres showed redistribution of drug to specific regions of the microspheres. Rhodamine partitioned to the surface and piroxicam partitioned to the interior of large PLG microspheres. Further, the rate of polymer degradation increased with microsphere size, possibly the result of a more acidic interior caused by increased accumulation of hydrolyzed polymer products in larger particles. Finally, larger microspheres developed a more porous interior structure during the drug release. Conclusions. Microsphere size affects drug release not only through changes in diffusion rates but also through secondary effects including drug distribution in the particle, polymer degradation rate, and microsphere erosion rates.
引用
收藏
页码:1055 / 1062
页数:8
相关论文
共 22 条
[1]   EFFECT OF MICROSPHERE SIZE AND FORMULATION FACTORS ON DRUG RELEASE FROM CONTROLLED-RELEASE FUROSEMIDE MICROSPHERES [J].
AKBUGA, J .
DRUG DEVELOPMENT AND INDUSTRIAL PHARMACY, 1991, 17 (04) :593-607
[2]   Biodegradation and biocompatibility of PLA and PLGA microspheres [J].
Anderson, JM ;
Shive, MS .
ADVANCED DRUG DELIVERY REVIEWS, 1997, 28 (01) :5-24
[3]   A theoretical model of erosion and macromolecular drug release from biodegrading microspheres [J].
Batycky, RP ;
Hanes, J ;
Langer, R ;
Edwards, DA .
JOURNAL OF PHARMACEUTICAL SCIENCES, 1997, 86 (12) :1464-1477
[4]   Precise control of PLG microsphere size provides enhanced control of drug release rate [J].
Berkland, C ;
King, M ;
Cox, A ;
Kim, K ;
Pack, DW .
JOURNAL OF CONTROLLED RELEASE, 2002, 82 (01) :137-147
[5]   Fabrication of PLG microspheres with precisely controlled and monodisperse size distributions [J].
Berkland, C ;
Kim, KK ;
Pack, DW .
JOURNAL OF CONTROLLED RELEASE, 2001, 73 (01) :59-74
[6]  
BERKLAND C, 2002, ACS S SERIES
[7]   Microspheres for protein delivery prepared from amphiphilic multiblock copolymers 2. Modulation of release rate [J].
Bezemer, JM ;
Radersma, R ;
Grijpma, DW ;
Dijkstra, PJ ;
van Blitterswijk, CA ;
Feijen, J .
JOURNAL OF CONTROLLED RELEASE, 2000, 67 (2-3) :249-260
[8]   CONTROLLED DELIVERY SYSTEMS FOR PROTEINS BASED ON POLY(LACTIC GLYCOLIC ACID) MICROSPHERES [J].
COHEN, S ;
YOSHIOKA, T ;
LUCARELLI, M ;
HWANG, LH ;
LANGER, R .
PHARMACEUTICAL RESEARCH, 1991, 8 (06) :713-720
[9]   The control of protein release from poly(DL-lactide co-glycolide) microparticles by variation of the external aqueous phase surfactant in the water-in oil-in water method [J].
Coombes, AGA ;
Yeh, MK ;
Lavelle, EC ;
Davis, SS .
JOURNAL OF CONTROLLED RELEASE, 1998, 52 (03) :311-320
[10]   Influence of particle size and dissolution conditions on the degradation properties of polylactide-co-glycolide particles [J].
Dunne, M ;
Corrigan, OI ;
Ramtoola, Z .
BIOMATERIALS, 2000, 21 (16) :1659-1668