Coordination of carbon supply and plant growth

被引:788
作者
Smith, Alison M.
Stitt, Mark
机构
[1] John Innes Inst, Dept Metab Biol, Norwich NR4 7UH, Norfolk, England
[2] Max Planck Inst Plant Physiol, D-14476 Golm, Germany
关键词
Arabidopsis; carbon allocation; enzyme activities; expression arrays; metabolites;
D O I
10.1111/j.1365-3040.2007.01708.x
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Plants must achieve a balance between carbon assimilation, storage and growth, but little is known about how this is achieved. We describe evidence for the existence of regulatory mechanisms that coordinate carbon supply and use, and the likely central role of sugar signalling. We propose the existence of both 'acute' and 'acclimatory' responses to alterations in carbon supply, the latter tuning the balance between carbon supply and demand to optimise the capacity for sustained growth. A full understanding of these responses requires new, systems-level approaches that integrate information from transcriptomic, enzyme activity, metabolomic and growth analyses. We illustrate the complexity of acute and acclimatory responses by consideration of the control of starch synthesis and degradation in leaves. Finally, we consider how carbon balance may be linked to growth, and the importance of these linkages for sustained plant growth in a changing environment.
引用
收藏
页码:1126 / 1149
页数:24
相关论文
共 178 条
[1]   Integration of plant responses to environmentally activated phytohormonal signals [J].
Achard, P ;
Cheng, H ;
De Grauwe, L ;
Decat, J ;
Schoutteten, H ;
Moritz, T ;
Van Der Straeten, D ;
Peng, JR ;
Harberd, NP .
SCIENCE, 2006, 311 (5757) :91-94
[2]   Modulation of floral development by a gibberellin-regulated microRNA [J].
Achard, P ;
Herr, A ;
Baulcombe, DC ;
Harberd, NP .
DEVELOPMENT, 2004, 131 (14) :3357-3365
[3]   DELLA proteins: integrators of multiple plant growth regulatory inputs? [J].
Alvey, L ;
Harberd, NP .
PHYSIOLOGIA PLANTARUM, 2005, 123 (02) :153-160
[4]   Characterization of mutants in Arabidopsis showing increased sugar-specific gene expression, growth, and developmental responses [J].
Baier, M ;
Hemmann, G ;
Holman, R ;
Corke, F ;
Card, R ;
Smith, C ;
Rook, F ;
Bevan, MW .
PLANT PHYSIOLOGY, 2004, 134 (01) :81-91
[5]   ADP-glucose pyrophosphorylase: a regulatory enzyme for plant starch synthesis [J].
Ballicora, MA ;
Iglesias, AA ;
Preiss, J .
PHOTOSYNTHESIS RESEARCH, 2004, 79 (01) :1-24
[6]   Activation of the potato tuber ADP-glucose pyrophosphorylase by thioredoxin [J].
Ballicora, MA ;
Frueauf, JB ;
Fu, YB ;
Schürmann, P ;
Preiss, J .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (02) :1315-1320
[7]   SUT2, a putative sucrose sensor in sieve elements [J].
Barker, L ;
Kühn, C ;
Weise, A ;
Schulz, A ;
Gebhardt, C ;
Hirner, B ;
Hellmann, H ;
Schulze, W ;
Ward, JM ;
Frommer, WB .
PLANT CELL, 2000, 12 (07) :1153-1164
[8]   A novel isoform of glucan, water dikinase phosphorylates pre-phosphorylated α-glucans and is involved in starch degradation in Arabidopsis [J].
Baunsgaard, L ;
Lütken, H ;
Mikkelsen, R ;
Glaring, MA ;
Pham, TT ;
Blennow, A .
PLANT JOURNAL, 2005, 41 (04) :595-605
[9]   Genome-wide analysis of gene expression profiles associated with cell cycle transitions in growing organs of Arabidopsis [J].
Beemster, GTS ;
De Veylder, L ;
Vercruysse, S ;
West, G ;
Rombaut, D ;
Van Hummelen, P ;
Galichet, A ;
Gruissem, W ;
Inzé, D ;
Vuylsteke, M .
PLANT PHYSIOLOGY, 2005, 138 (02) :734-743
[10]   Sugars and circadian regulation make major contributions to the global regulation of diurnal gene expression in Arabidopsis [J].
Bläsing, OE ;
Gibon, Y ;
Günther, M ;
Höhne, M ;
Morcuende, R ;
Osuna, D ;
Thimm, O ;
Usadel, B ;
Scheible, WR ;
Stitt, M .
PLANT CELL, 2005, 17 (12) :3257-3281