Human contribution to more-intense precipitation extremes

被引:1557
作者
Min, Seung-Ki [1 ]
Zhang, Xuebin [1 ]
Zwiers, Francis W. [1 ]
Hegerl, Gabriele C. [2 ]
机构
[1] Environm Canada, Div Climate Res, Toronto, ON M3H 5T4, Canada
[2] Univ Edinburgh, Sch Geosci, Edinburgh EH9 3JW, Midlothian, Scotland
基金
美国海洋和大气管理局;
关键词
CLIMATE; TEMPERATURE; MODEL;
D O I
10.1038/nature09763
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Extremes of weather and climate can have devastating effects on human society and the environment(1,2). Understanding past changes in the characteristics of such events, including recent increases in the intensity of heavy precipitation events over a large part of the Northern Hemisphere land area(3-5), is critical for reliable projections of future changes. Given that atmospheric water-holding capacity is expected to increase roughly exponentially with temperature-and that atmospheric water content is increasing in accord with this theoretical expectation(6-11)-it has been suggested that human-influenced global warming may be partly responsible for increases in heavy precipitation(3,5,7). Because of the limited availability of daily observations, however, most previous studies have examined only the potential detectability of changes in extreme precipitation through model-model comparisons(12-15). Here we show that human-induced increases in greenhouse gases have contributed to the observed intensification of heavy precipitation events found over approximately two-thirds of data-covered parts of Northern Hemisphere land areas. These results are based on a comparison of observed and multi-model simulated changes in extreme precipitation over the latter half of the twentieth century analysed with an optimal fingerprinting technique. Changes in extreme precipitation projected by models, and thus the impacts of future changes in extreme precipitation, may be underestimated because models seem to underestimate the observed increase in heavy precipitation with warming(16).
引用
收藏
页码:378 / 381
页数:4
相关论文
共 32 条
  • [1] Global observed changes in daily climate extremes of temperature and precipitation
    Alexander, LV
    Zhang, X
    Peterson, TC
    Caesar, J
    Gleason, B
    Tank, AMGK
    Haylock, M
    Collins, D
    Trewin, B
    Rahimzadeh, F
    Tagipour, A
    Kumar, KR
    Revadekar, J
    Griffiths, G
    Vincent, L
    Stephenson, DB
    Burn, J
    Aguilar, E
    Brunet, M
    Taylor, M
    New, M
    Zhai, P
    Rusticucci, M
    Vazquez-Aguirre, JL
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2006, 111 (D5)
  • [2] Atmospheric warming and the amplification of precipitation extremes
    Allan, Richard P.
    Soden, Brian J.
    [J]. SCIENCE, 2008, 321 (5895) : 1481 - 1484
  • [3] Constraints on future changes in climate and the hydrologic cycle
    Allen, MR
    Ingram, WJ
    [J]. NATURE, 2002, 419 (6903) : 224 - +
  • [4] Estimating signal amplitudes in optimal fingerprinting, part I: theory
    Allen, MR
    Stott, PA
    [J]. CLIMATE DYNAMICS, 2003, 21 (5-6) : 477 - 491
  • [5] Checking for model consistency in optimal fingerprinting
    Allen, MR
    Tett, SFB
    [J]. CLIMATE DYNAMICS, 1999, 15 (06) : 419 - 434
  • [6] [Anonymous], 2009, P NATL ACAD SCI USA, DOI DOI 10.1073/pnas.0907610106
  • [7] [Anonymous], CLIMATE CHANGE 2007
  • [8] [Anonymous], CLIM CHANG 2007
  • [9] A comparison of extreme European daily precipitation simulated by a global and a regional climate model for present and future climates
    Durman, CF
    Gregory, JM
    Hassell, DC
    Jones, RG
    Murphy, JM
    [J]. QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2001, 127 (573) : 1005 - 1015
  • [10] Dynamic and thermodynamic changes in mean and extreme precipitation under changed climate
    Emori, S
    Brown, SJ
    [J]. GEOPHYSICAL RESEARCH LETTERS, 2005, 32 (17) : 1 - 5