On the convergence of the parabolic approximation of a conservation law in several space dimensions

被引:6
作者
Gallouët, T [1 ]
Hubert, F [1 ]
机构
[1] Univ Aix Marseille 1, CMI, F-13453 Marseille 13, France
关键词
convergence; parabolic approximation; conservation law;
D O I
10.1142/S0252959999000035
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The authors give a proof of the convergence of the solution of the parabolic approximation u(t)(epsilon) + divf(x, t, u(epsilon)) = epsilon Delta u(epsilon) towards the entropic solution of the scalar conservation law u(t) + divf(x, t, u) = 0 in several space dimensions. For any initial condition u(0) is an element of L-infinity(R-N) and for a large class of flux f, they also prove the strong converge in any L-loc(p) space, using the notion of entropy process solution, which is a generalization of the measure-valued solutions of DiPerna.
引用
收藏
页码:7 / 10
页数:4
相关论文
共 11 条
[1]  
CHAINAISHILLAIR.C, 1999, IN PRESS M2AN
[2]   MEASURE-VALUED SOLUTIONS TO CONSERVATION-LAWS [J].
DIPERNA, RJ .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1985, 88 (03) :223-270
[3]  
EYMARD R, 1995, CHINESE ANN MATH B, V16, P1
[4]  
EYMARD R, IN PRESS PUBLICATION
[5]  
EYMARD R, 1998, IN PRESS HDB NUMERIC
[6]  
KRUSKOV SN, 1970, MATH USSR SBORNIK, V10, P1489
[7]  
Kuznetsov N. N., 1976, Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, V16, P1489
[8]  
LADYZENSKAYA OA, T MATH MONOGRAPH, V23
[9]  
Malek J., 1996, WEAK MEASURE VALUED
[10]  
Protter M.H., 1967, MAXIMUM PRINCIPLE DI