Quaternion fourier transform on quaternion fields and generalizations

被引:215
作者
Hitzer, Eckhard M. S. [1 ]
机构
[1] Univ Fukui, Dept Appl Phys, 3-9-1 Bunkyo, Fukui 9108507, Japan
关键词
Quaternions; Fourier transform; Clifford algebra; volume-time algebra; spacetime algebra; automorphisms;
D O I
10.1007/s00006-007-0037-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We treat the quaternionic Fourier transform (QFT) applied to quaternion fields and investigate QFT properties useful for applications. Different forms of the QFT lead us to different Plancherel theorems. We relate the QFT computation for quaternion fields to the QFT of real signals. We research the general linear (GL) transformation behavior of the QFT with matrices, Clifford geometric algebra and with examples. We finally arrive at wide-ranging non-commutative multivector FT generalizations of the QFT. Examples given are new volume-time and spacetime algebra Fourier transformations.
引用
收藏
页码:497 / 517
页数:21
相关论文
共 26 条
[1]   STRUCTURE OF ELECTROMAGNETIC FIELD IN A SPATIALLY DISPERSIVE MEDIUM [J].
AGARWAL, GS ;
PATTANAY.DN ;
WOLF, E .
PHYSICAL REVIEW LETTERS, 1971, 27 (15) :1022-&
[2]  
[Anonymous], 1978, NEW INT VERSION BIBL
[3]  
[Anonymous], REV MATEMATICA IBERO
[4]  
Bülow T, 2001, GEOMETRIC COMPUTING WITH CLIFFORD ALGEBRAS, P187
[5]  
BULOW T, 1999, THESIS U KIEL
[6]  
Cartan E., 1927, ANN MAT PUR APPL, V4, P209, DOI DOI 10.1007/BF02409989
[7]  
CARTAN E, 1928, ANN MAT PUR APPL, V5, P253
[8]   An introduction to commutative quaternions [J].
Catoni, Francesco ;
Cannata, Roberto ;
Zarnpetti, Paolo .
ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2006, 16 (01) :1-28
[9]  
COXETER HSM, 1980, GENERATORS RELATIONS
[10]  
Delanghe R., 1982, CLIFFORD ANAL, V76