Theoretical investigations of uranyl-ligand bonding: Four- and five-coordinate uranyl cyanide, isocyanide, carbonyl, and hydroxide complexes

被引:96
作者
Sonnenberg, JL
Hay, PJ
Martin, RL
Bursten, BE
机构
[1] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA
[2] Ohio State Univ, Dept Chem, Columbus, OH 43210 USA
关键词
D O I
10.1021/ic048567u
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
The coordination and bonding of equatorial hydroxide, carbonyl, cyanide (CN-), and isocyanide (NC-) ligands with uranyl dication, [UO2](2+), has been studied using density functional theory with relativistic effective core potentials. Good agreement is seen between experimental and calculated geometries of [UO2(OH)(4)](2-). Newly predicted ground-state structures of [UO2(OH)(5)](3-), [UO2(CO)(4)](2+), [UO2(CO)(5)](2+), [UO2(CN)(4)](2-), [UO2(CN)(5)](3-), [UO2(NC)(4)](2-), and [UO2(NC)(5)](3-) are reported. Four-coordinate uranyl isocyanide complexes are the predicted gas-phase species while five-coordinate uranyl cyanide complexes are energetically favorable in aqueous solution. Small energy differences between cyanide and isocyanide complexes indicate the energetic feasibility of mixed cyanide and isocyanide complexes. A D-2d uranyl tetrahydroxide is the dominant gas-phase and aqueous species, but formation of uranyl carbonyl complexes is seen to be exothermic in the gas-phase and endothermic in aqueous solution.
引用
收藏
页码:2255 / 2262
页数:8
相关论文
共 49 条
[1]   A new definition of cavities for the computation of solvation free energies by the polarizable continuum model [J].
Barone, V ;
Cossi, M ;
Tomasi, J .
JOURNAL OF CHEMICAL PHYSICS, 1997, 107 (08) :3210-3221
[2]   Structural relationships, interconversion, and optical properties of the uranyl iodates, UO2(IO3)2 and UO2(IO3)2(H2O):: A comparison of reaactions under mild and supercritical conditions [J].
Bean, AC ;
Peper, SM ;
Albrecht-Schmitt, TE .
CHEMISTRY OF MATERIALS, 2001, 13 (04) :1266-1272
[3]   DENSITY-FUNCTIONAL THERMOCHEMISTRY .3. THE ROLE OF EXACT EXCHANGE [J].
BECKE, AD .
JOURNAL OF CHEMICAL PHYSICS, 1993, 98 (07) :5648-5652
[4]   CYCLOPENTADIENYL ACTINIDE COMPLEXES - BONDING AND ELECTRONIC-STRUCTURE [J].
BURSTEN, BE ;
STRITTMATTER, RJ .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 1991, 30 (09) :1069-1085
[5]  
BURSTEN BE, 1986, INORG CHEM, V25, P1257, DOI 10.1021/ic00228a037
[6]   Density and wave function analysis of actinide complexes: What can fuzzy atom, atoms-in-molecules, Mulliken, Lowdin, and natural population analysis tell us? [J].
Clark, AE ;
Sonnenberg, JL ;
Hay, PJ ;
Martin, RL .
JOURNAL OF CHEMICAL PHYSICS, 2004, 121 (06) :2563-2570
[7]   Chemical speciation of the uranyl ion under highly alkaline conditions. Synthesis, structures, and oxo ligand exchange dynamics [J].
Clark, DL ;
Conradson, SD ;
Donohoe, RJ ;
Keogh, DW ;
Morris, DE ;
Palmer, PD ;
Rogers, RD ;
Tait, CD .
INORGANIC CHEMISTRY, 1999, 38 (07) :1456-1466
[8]   ACTINIDE CARBONATE COMPLEXES AND THEIR IMPORTANCE IN ACTINIDE ENVIRONMENTAL CHEMISTRY [J].
CLARK, DL ;
HOBART, DE ;
NEU, MP .
CHEMICAL REVIEWS, 1995, 95 (01) :25-48
[9]   Modeling complexes of the uranyl ion UO2L2n+:: Binding energies, geometries, and bonding analysis [J].
Clavaguéra-Sarrio, C ;
Hoyau, S ;
Ismail, N ;
Marsden, CJ .
JOURNAL OF PHYSICAL CHEMISTRY A, 2003, 107 (22) :4515-4525
[10]   Modeling of uranyl cation-water clusters [J].
Clavaguéra-Sarrio, C ;
Brenner, V ;
Hoyau, S ;
Marsden, CJ ;
Millié, P ;
Dognon, JP .
JOURNAL OF PHYSICAL CHEMISTRY B, 2003, 107 (13) :3051-3060