Complex Langevin equation and the many-fermion problem

被引:11
作者
Adami, C [1 ]
Koonin, SE [1 ]
机构
[1] CALTECH, WK Kellogg Radiat Lab, Pasadena, CA 91125 USA
来源
PHYSICAL REVIEW C | 2001年 / 63卷 / 03期
关键词
D O I
10.1103/PhysRevC.63.034319
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
We study the utility of a complex Langevin (CL) equation as an alternative for the Monte Carlo (MC) procedure in the evaluation of expectation values occurring in fermionic many-body problems. We find that a CL approach is natural in cases where nonpositive definite probability measures occur, and remains accurate even when the corresponding MC calculation develops a severe ''sign problem.'' While the convergence of CL averages cannot be guaranteed in principle, we show how convergent results can be obtained in two simple quantum mechanical models, as well as a nontrivial schematic shell model path integral with multiple particles and a noncommuting interaction (the Lipkin model).
引用
收藏
页码:343191 / 3431910
页数:10
相关论文
共 23 条
[1]   THE COMPLEX LANGEVIN EQUATION AND MONTE-CARLO SIMULATIONS OF ACTIONS WITH STATIC CHARGES [J].
AMBJORN, J ;
FLENSBURG, M ;
PETERSON, C .
NUCLEAR PHYSICS B, 1986, 275 (03) :375-397
[2]  
[Anonymous], 1993, WORLD SCI
[3]   TRANSFORMING SIGNS TO PHASE DISTRIBUTIONS IN QUANTUM SIMULATIONS [J].
DEUTSCH, JM .
PHYSICAL REVIEW E, 1994, 50 (04) :R2411-R2414
[4]   COMPLEX LANGEVIN-EQUATIONS AND LATTICE GAUGE-THEORY [J].
FLOWER, J ;
OTTO, SW ;
CALLAHAN, S .
PHYSICAL REVIEW D, 1986, 34 (02) :598-604
[5]   ON THE SEGREGATION PHENOMENON IN COMPLEX LANGEVIN SIMULATION [J].
FUJIMURA, K ;
OKANO, K ;
SCHULKE, L ;
YAMAGISHI, K ;
ZHENG, B .
NUCLEAR PHYSICS B, 1994, 424 (03) :675-689
[6]   NUMERICAL-INTEGRATION OF STOCHASTIC DIFFERENTIAL-EQUATIONS .2. [J].
GREENSIDE, HS ;
HELFAND, E .
BELL SYSTEM TECHNICAL JOURNAL, 1981, 60 (08) :1927-1940
[7]   COMPLEX LANGEVIN SIMULATIONS OF NON-ABELIAN INTEGRALS [J].
HAYMAKER, RW ;
WOSIEK, J .
PHYSICAL REVIEW D, 1988, 37 (04) :969-973
[8]   DIAGONALIZATION OF HAMILTONIANS FOR MANY-BODY SYSTEMS BY AUXILIARY FIELD QUANTUM MONTE-CARLO TECHNIQUE [J].
HONMA, M ;
MIZUSAKI, T ;
OTSUKA, T .
PHYSICAL REVIEW LETTERS, 1995, 75 (07) :1284-1287
[9]   CALCULATION OF PARTITION FUNCTIONS [J].
HUBBARD, J .
PHYSICAL REVIEW LETTERS, 1959, 3 (02) :77-78
[10]   COHERENT-STATE LANGEVIN-EQUATIONS FOR CANONICAL QUANTUM-SYSTEMS WITH APPLICATIONS TO THE QUANTIZED HALL-EFFECT [J].
KLAUDER, JR .
PHYSICAL REVIEW A, 1984, 29 (04) :2036-2047