Complex Langevin equation and the many-fermion problem

被引:11
作者
Adami, C [1 ]
Koonin, SE [1 ]
机构
[1] CALTECH, WK Kellogg Radiat Lab, Pasadena, CA 91125 USA
来源
PHYSICAL REVIEW C | 2001年 / 63卷 / 03期
关键词
D O I
10.1103/PhysRevC.63.034319
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
We study the utility of a complex Langevin (CL) equation as an alternative for the Monte Carlo (MC) procedure in the evaluation of expectation values occurring in fermionic many-body problems. We find that a CL approach is natural in cases where nonpositive definite probability measures occur, and remains accurate even when the corresponding MC calculation develops a severe ''sign problem.'' While the convergence of CL averages cannot be guaranteed in principle, we show how convergent results can be obtained in two simple quantum mechanical models, as well as a nontrivial schematic shell model path integral with multiple particles and a noncommuting interaction (the Lipkin model).
引用
收藏
页码:343191 / 3431910
页数:10
相关论文
共 23 条
[11]   Results from shell-model Monte Carlo studies [J].
Koonin, SE ;
Dean, DJ ;
Langanke, K .
ANNUAL REVIEW OF NUCLEAR AND PARTICLE SCIENCE, 1997, 47 :463-504
[12]  
Koonin SE, 1997, PHYS REP, V278, P2
[13]  
KOONIN SE, 1990, COMPUTATIONAL PHYSIC, pCH5
[14]   MONTE-CARLO EVALUATION OF PATH-INTEGRALS FOR THE NUCLEAR SHELL-MODEL [J].
LANG, GH ;
JOHNSON, CW ;
KOONIN, SE ;
ORMAND, WE .
PHYSICAL REVIEW C, 1993, 48 (04) :1518-1545
[15]   THE CONVERGENCE OF COMPLEX LANGEVIN SIMULATIONS [J].
LEE, S .
NUCLEAR PHYSICS B, 1994, 413 (03) :827-848
[16]   VALIDITY OF MANY-BODY APPROXIMATION METHODS FOR A SOLVABLE MODEL .I. EXACT SOLUTIONS AND PERTURBATION THEORY [J].
LIPKIN, HJ ;
MESHKOV, N ;
GLICK, AJ .
NUCLEAR PHYSICS, 1965, 62 (02) :188-&
[17]   THE ROLE OF A KERNEL IN COMPLEX LANGEVIN SYSTEMS [J].
OKAMOTO, H ;
OKANO, K ;
SCHULKE, L ;
TANAKA, S .
NUCLEAR PHYSICS B, 1989, 324 (03) :684-714
[18]  
OKANO K, 1993, PROG THEOR PHYS SUPP, P313, DOI 10.1143/PTPS.111.313
[19]   KERNEL-CONTROLLED COMPLEX LANGEVIN SIMULATION - FIELD-DEPENDENT KERNEL [J].
OKANO, K ;
SCHULKE, L ;
ZHENG, B .
PHYSICS LETTERS B, 1991, 258 (3-4) :421-426
[20]   ON COMPLEX PROBABILITIES [J].
PARISI, G .
PHYSICS LETTERS B, 1983, 131 (4-6) :393-395