Computation of shortest path in cellular automata

被引:46
作者
Adamatzky, AI
机构
[1] Biophysics Department, St. Petersburg State University, 199034 St. Petersburg
关键词
shortest path; cellular automata; parallel algorithms; complexity;
D O I
10.1016/0895-7177(96)00006-4
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper, we show how to find the shortest path between given nodes of a mesh with weighted edges. We use a cellular automaton which exhibits autowave patterns, where a wave of auto-excitation originates in source node, spreads around the mesh, and modifies states of the cells to make a stationary pattern isomorphed to the shortest path from source node to destination one. For different formulations of the shortest path problem, and various cellular automata (which solve it), we proved the bounds of complexity. For the sake of clarity, we present several examples of cellular automata computation of the shortest path. They are illustrated in detail.
引用
收藏
页码:105 / 113
页数:9
相关论文
共 17 条
[1]  
DELOSME JM, 1989, PARALLEL DISTRIBUTED
[2]  
Dijkstra E. W., 1959, NUMER MATH, V1, P269, DOI DOI 10.1007/BF01386390
[3]   ALGORITHM-97 - SHORTEST PATH [J].
FLOYD, RW .
COMMUNICATIONS OF THE ACM, 1962, 5 (06) :345-345
[4]   A DISTRIBUTED SHORTEST-PATH ALGORITHM FOR A PLANAR NETWORK [J].
FREDERICKSON, GN .
INFORMATION AND COMPUTATION, 1990, 86 (02) :140-159
[5]  
Fredman M. L., 1984, 25th Annual Symposium on Foundations of Computer Science (Cat. No. 84CH2085-9), P338, DOI 10.1109/SFCS.1984.715934
[6]  
FREDMAN ML, 1976, SIAM J COMPUT, V6, P83
[7]   A CELLULAR AUTOMATON MODEL OF EXCITABLE MEDIA .2. CURVATURE, DISPERSION, ROTATING WAVES AND MEANDERING WAVES [J].
GERHARDT, M ;
SCHUSTER, H ;
TYSON, JJ .
PHYSICA D, 1990, 46 (03) :392-415
[8]   A CELLULAR AUTOMATON MODEL OF EXCITABLE MEDIA .3. FITTING THE BELOUSOV-ZHABOTINSKII REACTION [J].
GERHARDT, M ;
SCHUSTER, H ;
TYSON, JJ .
PHYSICA D, 1990, 46 (03) :416-426
[9]   REVERSIBLE CELLULAR AUTOMATA AND CHEMICAL TURBULENCE [J].
HARTMAN, H ;
TAMAYO, P .
PHYSICA D, 1990, 45 (1-3) :293-306
[10]   AN INCREMENTAL MECHANICAL DEVELOPMENT OF SYSTOLIC SOLUTIONS TO THE ALGEBRAIC PATH PROBLEM [J].
HUANG, CH ;
LENGAUER, C .
ACTA INFORMATICA, 1989, 27 (02) :97-124