A global model of carbon, nitrogen and phosphorus cycles for the terrestrial biosphere

被引:501
作者
Wang, Y. P. [1 ]
Law, R. M. [1 ]
Pak, B. [1 ]
机构
[1] CSIRO Marine & Atmospher Res, Ctr Australian Weather & Climate Res, Aspendale, Vic 3195, Australia
关键词
NET PRIMARY PRODUCTIVITY; LONG-TERM RESPONSE; N-P STOICHIOMETRY; SOIL CARBON; HEDLEY FRACTIONATION; SEASONAL CYCLE; CLIMATE-CHANGE; FOREST SOILS; LAND-USE; NUTRIENT;
D O I
10.5194/bg-7-2261-2010
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
Carbon storage by many terrestrial ecosystems can be limited by nutrients, predominantly nitrogen (N) and phosphorus (P), in addition to other environmental constraints, water, light and temperature. However the spatial distribution and the extent of both N and P limitation at the global scale have not been quantified. Here we have developed a global model of carbon (C), nitrogen (N) and phosphorus (P) cycles for the terrestrial biosphere. Model estimates of steady state C and N pool sizes and major fluxes between plant, litter and soil pools, under present climate conditions, agree well with various independent estimates. The total amount of C in the terrestrial biosphere is 2767 Gt C, and the C fractions in plant, litter and soil organic matter are 19%, 4% and 77%. The total amount of N is 135 Gt N, with about 94% stored in the soil, 5% in the plant live biomass, and 1% in litter. We found that the estimates of total soil P and its partitioning into different pools in soil are quite sensitive to biochemical P mineralization. The total amount of P (plant biomass, litter and soil) excluding occluded P in soil is 17 Gt P in the terrestrial biosphere, 33% of which is stored in the soil organic matter if biochemical P mineralization is modelled, or 31 Gt P with 67% in soil organic matter otherwise. This model was used to derive the global distribution and uncertainty of N or P limitation on the productivity of terrestrial ecosystems at steady state under present conditions. Our model estimates that the net primary productivity of most tropical evergreen broadleaf forests and tropical savannahs is reduced by about 20% on average by P limitation, and most of the remaining biomes are N limited; N limitation is strongest in high latitude deciduous needle leaf forests, and reduces its net primary productivity by up to 40% under present conditions.
引用
收藏
页码:2261 / 2282
页数:22
相关论文
共 114 条
[1]  
Aerts R, 2000, ADV ECOL RES, V30, P1, DOI 10.1016/S0065-2504(08)60016-1
[2]  
Ajtay G.L., 1979, The Global Carbon Cycle (SCOPE 13), P129
[3]   A parameterization of leaf phenology for the terrestrial ecosystem component of climate models [J].
Arora, VK ;
Boer, GJ .
GLOBAL CHANGE BIOLOGY, 2005, 11 (01) :39-59
[4]   DESCRIPTION OF PHOSPHATE ADSORPTION CURVES [J].
BARROW, NJ .
JOURNAL OF SOIL SCIENCE, 1978, 29 (04) :447-462
[5]   Total carbon and nitrogen in the soils of the world [J].
Batjes, N. H. .
EUROPEAN JOURNAL OF SOIL SCIENCE, 2014, 65 (01) :10-21
[6]   Effects of fire on properties of forest soils: a review [J].
Certini, G .
OECOLOGIA, 2005, 143 (01) :1-10
[7]   Changing sources of nutrients during four million years of ecosystem development [J].
Chadwick, OA ;
Derry, LA ;
Vitousek, PM ;
Huebert, BJ ;
Hedin, LO .
NATURE, 1999, 397 (6719) :491-497
[8]   Synergy of rising nitrogen depositions and atmospheric CO2 on land carbon uptake moderately offsets global warming [J].
Churkina, Galina ;
Brovkin, Victor ;
von Bloh, Werner ;
Trusilova, Kristina ;
Jung, Martin ;
Dentener, Frank .
GLOBAL BIOGEOCHEMICAL CYCLES, 2009, 23
[9]   C:N:P stoichiometry in soil:: is there a "Redfield ratio" for the microbial biomass? [J].
Cleveland, Cory C. ;
Liptzin, Daniel .
BIOGEOCHEMISTRY, 2007, 85 (03) :235-252
[10]   LONG-TERM RESPONSE OF NUTRIENT-LIMITED FORESTS TO CO2 ENRICHMENT - EQUILIBRIUM BEHAVIOR OF PLANT-SOIL MODELS [J].
COMINS, HN ;
MCMURTRIE, RE .
ECOLOGICAL APPLICATIONS, 1993, 3 (04) :666-681