Rewiring Cells: Synthetic Biology as a Tool to Interrogate the Organizational Principles of Living Systems

被引:142
作者
Bashor, Caleb J. [1 ]
Horwitz, Andrew A. [1 ]
Peisajovich, Sergio G. [1 ]
Lim, Wendell A. [1 ]
机构
[1] Univ Calif San Francisco, Dept Cellular & Mol Pharmacol, San Francisco, CA 94158 USA
来源
ANNUAL REVIEW OF BIOPHYSICS, VOL 39 | 2010年 / 39卷
关键词
modularity; network; engineering; evolvability; GENE NETWORKS; HISTONE MODIFICATIONS; TOGGLE SWITCH; PROTEIN; EVOLUTION; UBIQUITIN; MOTIFS; DIFFERENTIATION; CONSTRUCTION; SPECIFICITY;
D O I
10.1146/annurev.biophys.050708.133652
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
The living cell is an incredibly complex entity, and the goal of predictively and quantitatively understanding its function is one of the next great challenges in biology. Much of what we know about the cell concerns its constituent parts, but to a great extent we have yet to decode how these parts are organized to yield complex physiological function. Classically, we have learned about the organization of cellular networks by disrupting them through genetic or chemical means. The emerging discipline of synthetic biology offers an additional, powerful approach to study systems. By rearranging the parts that comprise existing networks, we can gain valuable insight into the hierarchical logic of the networks and identify the modular building blocks that evolution uses to generate innovative function. In addition, by building minimal toy networks, one can systematically explore the relationship between network structure and function. Here, we outline recent work that uses synthetic biology approaches to investigate the organization and function of cellular networks, and describe a vision for a synthetic biology toolkit that could be used to interrogate the design principles of diverse systems.
引用
收藏
页码:515 / 537
页数:23
相关论文
共 66 条
[1]   Rational design of memory in eukaryotic cells [J].
Ajo-Franklin, Caroline M. ;
Drubin, David A. ;
Eskin, Julian A. ;
Gee, Elaine P. S. ;
Landgraf, Dirk ;
Phillips, Ira ;
Silver, Pamela A. .
GENES & DEVELOPMENT, 2007, 21 (18) :2271-2276
[2]   Network motifs: theory and experimental approaches [J].
Alon, Uri .
NATURE REVIEWS GENETICS, 2007, 8 (06) :450-461
[3]   Development of genetic circuitry exhibiting toggle switch or oscillatory behavior in Escherichia coli [J].
Atkinson, MR ;
Savageau, MA ;
Myers, JT ;
Ninfa, AJ .
CELL, 2003, 113 (05) :597-607
[4]   Network biology:: Understanding the cell's functional organization [J].
Barabási, AL ;
Oltvai, ZN .
NATURE REVIEWS GENETICS, 2004, 5 (02) :101-U15
[5]   Biological rhythms - Circadian clocks limited by noise [J].
Barkai, N ;
Leibler, S .
NATURE, 2000, 403 (6767) :267-268
[6]   Using engineered scaffold interactions to reshape MAP kinase pathway signaling dynamics [J].
Bashor, Caleb J. ;
Helman, Noah C. ;
Yan, Shude ;
Lim, Wendell A. .
SCIENCE, 2008, 319 (5869) :1539-1543
[7]   Engineering stability in gene networks by autoregulation [J].
Becskei, A ;
Serrano, L .
NATURE, 2000, 405 (6786) :590-593
[8]   Positive feedback in eukaryotic gene networks:: cell differentiation by graded to binary response conversion [J].
Becskei, A ;
Séraphin, B ;
Serrano, L .
EMBO JOURNAL, 2001, 20 (10) :2528-2535
[9]   Domains, motifs, and scaffolds:: The role of modular interactions in the evolution and wiring of cell signaling circuits [J].
Bhattacharyya, Roby P. ;
Remenyi, Attila ;
Yeh, Brian J. ;
Lim, Wendell A. .
ANNUAL REVIEW OF BIOCHEMISTRY, 2006, 75 :655-680
[10]   Millisecond-timescale, genetically targeted optical control of neural activity [J].
Boyden, ES ;
Zhang, F ;
Bamberg, E ;
Nagel, G ;
Deisseroth, K .
NATURE NEUROSCIENCE, 2005, 8 (09) :1263-1268