The surface diffusion flow for immersed hypersurfaces

被引:107
作者
Escher, J [1 ]
Mayer, UF
Simonett, G
机构
[1] Univ Basel, Inst Math, CH-4051 Basel, Switzerland
[2] Vanderbilt Univ, Dept Math, Nashville, TN 37240 USA
关键词
surface diffusion; mean curvature; free boundary problem; immersed hypersurfaces; center manifolds; maximal regularity; numerical simulations;
D O I
10.1137/S0036141097320675
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show existence and uniqueness of classical solutions for the motion of immersed hypersurfaces driven by surface diffusion. If the initial surface is embedded and close to a sphere, we prove that the solution exists globally and converges exponentially fast to a sphere. Furthermore, we provide numerical simulations showing the creation of singularities for immersed curves.
引用
收藏
页码:1419 / 1433
页数:15
相关论文
共 30 条
[1]  
Aleksandrov AD., 1956, VESTNIK LENINGRAD U, V11, P5
[2]  
Alikakos N., 1994, ARCH RATIONAL MECH A, V128, P164
[3]  
Amann H., 1995, LINEAR QUASILINEAR P, V2
[4]  
Amann H., 1995, Abstract Linear Theory, Monographs inMathematics, V89, DOI DOI 10.1007/978-3-0348-9221-6
[5]  
Amann H., 1993, FUNCTION SPACES DIFF, P9
[6]  
ANGENENT S, 1991, J DIFFER GEOM, V33, P601
[7]   NONLINEAR ANALYTIC SEMIFLOWS [J].
ANGENENT, SB .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1990, 115 :91-107
[8]   EVOLUTION OF AN INTERFACE BY SURFACE-DIFFUSION [J].
BARAS, P ;
DUCHON, J ;
ROBERT, R .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1984, 9 (04) :313-335
[9]  
Cahn J. M., 1996, Euro. J. Appl. Math., V7, P287, DOI DOI 10.1017/S0956792500002369
[10]   OVERVIEW NO-113 - SURFACE MOTION BY SURFACE-DIFFUSION [J].
CAHN, JW ;
TAYLOR, JE .
ACTA METALLURGICA ET MATERIALIA, 1994, 42 (04) :1045-1063