A tissue-restricted cAMP transcriptional response -: SOX10 modulates α-melanocyte-stimulating hormone-triggered expression of microphthalmia-associated transcription factor in melanocytes

被引:74
作者
Huber, WE
Price, ER
Widlund, HR
Du, JY
Davis, IJ
Wegner, M
Fisher, DE
机构
[1] Dana Farber Canc Inst, Div Pediat Hematol Oncol, Boston, MA 02115 USA
[2] Harvard Univ, Childrens Hosp, Sch Med, Boston, MA 02115 USA
[3] Univ Erlangen Nurnberg, Inst Biochem, D-91054 Erlangen, Germany
关键词
D O I
10.1074/jbc.M309036200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
alpha-Melanocyte-stimulating hormone (MSH) utilizes cAMP to trigger pigmentation of melanocytes via activation of melanocyte-restricted microphthalmia-associated transcription factor (M-MITF) expression. M-MITF is a melanocyte-restricted helix-loop-helix transcription factor capable of transactivating promoters for multiple genes whose products modulate pigmentation. Although M-MITF promoter activation by MSH is known to occur through a conserved cAMP-response element (CRE), it remains unclear how this CRE exhibits such exquisitely tissue-restricted responsiveness. Here we show that cAMP-mediated CRE-binding protein activation of the M-MITF promoter requires a second DNA element located similar to100 bp upstream, a site that is bound and activated by SOX10. Mutations in the SOX10 transcription factor, like MITF, results in a disorder known as Waardenburg Syndrome. The cAMP response of the M-MITF promoter was analyzed in melanoma and neuroblastoma cells (which are neural crest-derived but lack both M-MITF and SOX10 expression). M-MITF promoter responsiveness to cAMP was found to depend upon SOX10, and reciprocally, SOX10 transactivation was dependent upon the CRE. Ectopic SOX10 expression, in cooperation with cAMP signaling, activated the M-MITF promoter function and the expression of measurable endogenous M-MITF transcripts in neuroblastoma cells. SOX10(dom), a mutant allele, failed to cooperate with cAMP in neuroblastoma cells and attenuated the cAMP responsiveness of the M-MITF promoter in melanoma cells. These observations demonstrate a means whereby the ubiquitous cAMP signaling machinery is harnessed to produce a highly tissue-restricted transcriptional response by cooperating with architectural factors, in this case SOX10.
引用
收藏
页码:45224 / 45230
页数:7
相关论文
共 27 条
[1]   MELANOCYTE-SPECIFIC EXPRESSION OF THE HUMAN TYROSINASE PROMOTER - ACTIVATION BY THE MICROPHTHALMIA GENE-PRODUCT AND ROLE OF THE INITIATOR [J].
BENTLEY, NJ ;
EISEN, T ;
GODING, CR .
MOLECULAR AND CELLULAR BIOLOGY, 1994, 14 (12) :7996-8006
[2]   Microphthalmia gene product as a signal transducer in cAMP-induced differentiation of melanocytes [J].
Bertolotto, C ;
Abbe, P ;
Hemesath, TJ ;
Bille, K ;
Fisher, DE ;
Ortonne, JP ;
Ballotti, R .
JOURNAL OF CELL BIOLOGY, 1998, 142 (03) :827-835
[3]   Interaction among SOX10 PAX3 and MITF, three genes altered in Waardenburg syndrome [J].
Bondurand, N ;
Pingault, V ;
Goerich, DE ;
Lemort, N ;
Sock, E ;
Le Caignec, C ;
Wegner, M ;
Goossens, M .
HUMAN MOLECULAR GENETICS, 2000, 9 (13) :1907-1917
[4]   Control of neural crest cell fate by the Wnt signalling pathway [J].
Dorsky, RI ;
Moon, RT ;
Raible, DW .
NATURE, 1998, 396 (6709) :370-373
[5]  
Dorsky RI, 2000, GENE DEV, V14, P158
[6]   Identification of a melanocyte-type promoter of the microphthalmia-associated transcription factor gene [J].
Fuse, N ;
Yasumoto, K ;
Suzuki, H ;
Takahashi, K ;
Shibahara, S .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1996, 219 (03) :702-707
[7]   MICROPHTHALMIA, A CRITICAL FACTOR IN MELANOCYTE DEVELOPMENT, DEFINES A DISCRETE TRANSCRIPTION FACTOR FAMILY [J].
HEMESATH, TJ ;
STEINGRIMSSON, E ;
MCGILL, G ;
HANSEN, MJ ;
VAUGHT, J ;
HODGKINSON, CA ;
ARNHEITER, H ;
COPELAND, NG ;
JENKINS, NA ;
FISHER, DE .
GENES & DEVELOPMENT, 1994, 8 (22) :2770-2780
[8]   MAP kinase links the transcription factor Microphthalmia to c-Kit signalling in melanocytes [J].
Hemesath, TJ ;
Price, ER ;
Takemoto, C ;
Badalian, T ;
Fisher, DE .
NATURE, 1998, 391 (6664) :298-301
[9]   Mutation of the Sry-related Sox10 gene in Dominant megacolon, a mouse model for human Hirschsprung disease [J].
Herbarth, B ;
Pingault, V ;
Bondurand, N ;
Kuhlbrodt, K ;
Hermans-Borgmeyer, I ;
Puliti, A ;
Lemort, N ;
Goossens, M ;
Wegner, M .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (09) :5161-5165
[10]   CREB regulates hepatic gluconeogenesis through the coactivator PGC-1 [J].
Herzig, S ;
Long, FX ;
Jhala, US ;
Hedrick, S ;
Quinn, R ;
Bauer, A ;
Rudolph, D ;
Schutz, G ;
Yoon, C ;
Puigserver, P ;
Spiegelman, B ;
Montminy, M .
NATURE, 2001, 413 (6852) :179-183