Reactive oxygen species of mitochondrial origin have been implicated in regulating the expression of several tumor necrosis factor (TNF)-induced genes. Manganese superoxide dismutase (Mn-SOD) is one of many genes, but only antioxidant enzyme, induced in response to tumor necrosis factor, Mn SOD is a nuclear-encoded mitochondrial matrix protein and serves a protective function by detoxifying superoxide, To address the role of superoxide in regulating gene expression in response to TNF, we have constitutively overexpressed Mn-SOD in a human fibrosarcoma cell line and asked what effect this has on the expression of a number of TNF-responsive genes using reverse transcription-polymerase chain reaction, Of the TNF-induced transcripts analyzed, only interleukin-1 alpha (IL-1 alpha) was modulated in response to Mn-SOD overexpression. In all cases of Mn-SOD overexpression, IL-la protein and mRNA levels were lowered constitutively and in response to TNF when compared to the parental and mock-transfected cell lines. The induction of IL-la by TNF can also be decreased by growth in 3% oxygen as compared to growth in 21% O-2; in addition, growth in low oxygen lowers the basal level of IL-1 alpha protein, The effect of Mn-SOD overexpression on IL-1 alpha expression can be overcome by treatment with the protein kinase C activator, phorbol 12-myristate 13-acetate. Mn-SOD overexpression and low oxygen alter IL-1 alpha mRNA levels by decreasing the stability of the IL-1 alpha mRNA. These findings indicate that both Mn-SOD and O-2 may regulate the levels of a cellular oxidant involved in both basal and TNF induced IL-1 alpha expression, presumably superoxide.