TEMPORAL GRAPHICAL MODELS FOR CROSS-SPECIES GENE REGULATORY NETWORK DISCOVERY

被引:4
作者
Liu, Yan [1 ]
Niculescu-Mizil, Alexandru [2 ]
Lozano, Aurelie [2 ]
Lu, Yong [3 ]
机构
[1] Univ So Calif, Dept Comp Sci, Los Angeles, CA 90089 USA
[2] IBM Corp, TJ Watson Res Ctr, Yorktown Hts, NY 10598 USA
[3] Harvard Univ, Harvard Med Sch, Boston, MA 02115 USA
关键词
Temporal causal modeling; Granger casuality; time-series microarray data; cross-species analysis; EXPRESSION; MACROPHAGES; ACTIVATION; INFECTION; RESPONSES;
D O I
10.1142/S0219720011005525
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Many genes and biological processes function in similar ways across different species. Cross-species gene expression analysis, as a powerful tool to characterize the dynamical properties of the cell, has found a number of applications, such as identifying a conserved core set of cell cycle genes. However, to the best of our knowledge, there is limited effort on developing appropriate techniques to capture the causality relations between genes from time-series microarray data across species. In this paper, we present hidden Markov random field regression with L-1 penalty to uncover the regulatory network structure for different species. The algorithm provides a framework for sharing information across species via hidden component graphs and is able to incorporate domain knowledge across species easily. We demonstrate our method on two synthetic datasets and apply it to discover causal graphs from innate immune response data.
引用
收藏
页码:231 / 250
页数:20
相关论文
共 45 条
[1]   BASIC LOCAL ALIGNMENT SEARCH TOOL [J].
ALTSCHUL, SF ;
GISH, W ;
MILLER, W ;
MYERS, EW ;
LIPMAN, DJ .
JOURNAL OF MOLECULAR BIOLOGY, 1990, 215 (03) :403-410
[2]  
Arnold A, 2007, P INT C KNOWL DISC D
[3]  
Berg J, 2004, P NATL ACAD SCI USA, V103, P10967
[4]   Similarities and differences in genome-wide expression data of six organisms [J].
Bergmann, S ;
Ihmels, J ;
Barkai, N .
PLOS BIOLOGY, 2004, 2 (01) :85-93
[5]  
Bilmes Jeff A, 1998, Int. Comput. Sci. Inst., V4, P126
[6]  
Bishop C. M., 2007, Technometrics, DOI DOI 10.1198/TECH.2007.S518
[7]  
Bourque Guillaume, 2004, J Bioinform Comput Biol, V2, P765, DOI 10.1142/S0219720004000892
[8]  
Caruana R., 1997, Ph.D. dissertation
[9]   Ectopic expression of interleukin-1 receptor type II enhances cell migration through activation of the pre-interleukin lot pathway [J].
Chang, Shih-Yu ;
Su, Pei-Fen ;
Lee, Te-Chang .
CYTOKINE, 2009, 45 (01) :32-38
[10]   Unique gene expression profiles of human macrophages and dendritic cells to phylogenetically distinct parasites [J].
Chaussabel, D ;
Semnani, RT ;
McDowell, MA ;
Sacks, D ;
Sher, A ;
Nutman, TB .
BLOOD, 2003, 102 (02) :672-681