New measurements of the water vapor continuum in the region from 0.3 to 2.7 THz

被引:54
作者
Podobedov, V. B. [1 ]
Plusquellic, D. F. [1 ]
Siegrist, K. E. [1 ]
Fraser, G. T. [1 ]
Ma, Q. [2 ]
Tipping, R. H. [3 ]
机构
[1] NIST, Opt Technol Div, Gaithersburg, MD 20899 USA
[2] Columbia Univ, NASA, Goddard Inst Space Studies, Dept Appl Phys & Appl Math, New York, NY 10025 USA
[3] Univ Alabama, Dept Phys & Astron, Tuscaloosa, AL 35487 USA
基金
美国国家航空航天局;
关键词
continuum; IR; THz; nitrogen; water vapor; atmosphere;
D O I
10.1016/j.jqsrt.2007.07.005
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We present a spectroscopic study of the water vapor continuum absorption in the far-IR region from 10 to 90cm(-1) (0.3-2.7THz). The experimental technique combines a temperature-stabilized multipass absorption cell, a polarizing (Martin-Puplett) interferometric spectrometer, and a liquid-He-cooled bolometer detector. The contributions to the absorbance resulting from the structureless H2O-H2O and H2O-N-2 continua have been measured in the temperature range from 293 to 333 K with spectral resolution of 0.04-0.12 cm(-1). The resonant water vapor spectrum was modeled using the HITRAN04 database and a Van Vleck-Weisskopf lineshape function with a 100cm(-1) far-wing cut-off. Within experimental uncertainty, both the H2O-H2O and H2O-N-2 continua demonstrate nearly quadratic dependencies of absorbance on frequency with, however, some deviation near the 2.5 THz window. The absorption coefficients of 3.83 and 0.185 (dB/km)/(kPaTHZ)(2) were measured for self- and foreign-gas continuum, respectively. The corresponding temperature exponents Were found to be 8.8 and 5.7. The theoretically predicted foreign continuum is presented and a reasonable agreement with experiment is obtained. (c) 2007 Elsevier Ltd. All rights reserved.
引用
收藏
页码:458 / 467
页数:10
相关论文
共 18 条
[1]   A long path cell for the fourier spectrometer Bruker IFS 120 HR: Application to the weak nu(1)+nu(2) and 3 nu(2) bands of carbon disulfide [J].
Ahonen, T ;
Alanko, S ;
Horneman, VM ;
Koivusaari, M ;
Paso, R ;
Tolonen, AM ;
Anttila, R .
JOURNAL OF MOLECULAR SPECTROSCOPY, 1997, 181 (02) :279-286
[3]  
Clough S. A., 1989, Atmos. Res, V23, P229, DOI [DOI 10.1016/0169-8095(89)90020-3, 10.1016/0169-8095(89)90020-3]
[4]   THE FAR-INFRARED CONTINUUM ABSORPTION OF WATER-VAPOR [J].
DAVIS, GR .
JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 1993, 50 (06) :673-694
[5]   ABSOLUTE MEASUREMENTS OF ATMOSPHERIC EMISSION AND ABSORPTION IN THE RANGE 100-1000 GHZ [J].
HILLS, RE ;
WEBSTER, AS ;
ALSTON, DA ;
MORSE, PLR ;
ZAMMIT, CC ;
MARTIN, DH ;
RICE, DP ;
ROBSON, EI .
INFRARED PHYSICS, 1978, 18 (5-6) :819-825
[6]   Water vapor continuum:: absorption measurements at 350 GHz and model calculations [J].
Kuhn, T ;
Bauer, A ;
Godon, M ;
Buehler, SA ;
Künzi, K .
JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2002, 74 (05) :545-562
[7]   A simple analytical parameterization for the water vapor millimeter wave foreign continuum [J].
Ma, Q ;
Tipping, RH .
JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2003, 82 (1-4) :517-531
[8]   Water vapor millimeter wave foreign continuum: A Lanczos calculation in the coordinate representation [J].
Ma, Q ;
Tipping, RH .
JOURNAL OF CHEMICAL PHYSICS, 2002, 117 (23) :10581-10596
[9]   A Fourier transform spectrometer for measurement of atmospheric transmission at submillimeter wavelengths [J].
Paine, S ;
Blundell, R ;
Papa, DC ;
Barrett, JW ;
Radford, SJE .
PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF THE PACIFIC, 2000, 112 (767) :108-118
[10]   Atmospheric transmission at microwaves (ATM): An improved model for millimeter/submillimeter applications [J].
Pardo, JR ;
Cernicharo, J ;
Serabyn, E .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2001, 49 (12) :1683-1694