QED vertex form factors at two loops

被引:61
作者
Bonciani, R [1 ]
Mastrolia, P
Remiddi, E
机构
[1] Univ Freiburg, Fak Math & Phys, D-79104 Freiburg, Germany
[2] Univ Bologna, Dipartimento Fis, I-40026 Bologna, Italy
[3] Ist Nazl Fis Nucl, Sez Bologna, I-40026 Bologna, Italy
[4] Univ Karlsruhe, Inst Theoret Teilchenphys, D-76128 Karlsruhe, Germany
关键词
Feynman diagrams; multi-loop calculations; vertex diagrams; QED form factors;
D O I
10.1016/j.nuclphysb.2003.10.031
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We present the closed analytic expression of the form factors of the two-loop QED vertex amplitude for on-shell electrons of finite mass m and arbitrary momentum transfer S = -Q(2). The calculation is carried out within the continuous D-dimensional regularization scheme, with a single continuous parameter D, the dimension of the space-time, which regularizes at the same time ultraviolet (UV) and infrared (IR) divergences. The results are expressed in terms of 1-dimensional harmonic polylogarithms of maximum weight 4. (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:399 / 452
页数:54
相关论文
共 24 条
[1]  
[Anonymous], 1909, ABHANDLUNGEN KAISERL
[2]   METHOD OF GAUGE-INVARIANT REGULARIZATION [J].
ASHMORE, JF .
LETTERE AL NUOVO CIMENTO, 1972, 4 (08) :289-+
[3]  
BARBIERI R, 1972, NUOV CIMEN S I FIS A, VA 11, P865, DOI 10.1007/BF02728546
[4]   ELECTRON FORM-FACTORS UP TO FOURTH ORDER .1. [J].
BARBIERI, R ;
MIGNACO, JA ;
REMIDDI, E .
NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA A, 1972, A 11 (04) :824-+
[5]   LOWEST ORDER DIVERGENT GRAPHS IN NU-DIMENSIONAL SPACE [J].
BOLLINI, CG ;
GIAMBIAGI, JJ .
PHYSICS LETTERS B, 1972, B 40 (05) :566-+
[6]  
BOLLINI CG, 1972, NUOV CIMEN S I FIS B, VB 12, P20
[7]   Vertex diagrams for the QED form factors at the 2-loop level [J].
Bonciani, R ;
Matrolia, P ;
Remiddi, E .
NUCLEAR PHYSICS B, 2003, 661 (1-2) :289-343
[8]  
Caffo M, 1998, ACTA PHYS POL B, V29, P2627
[9]  
Caffo M, 1998, NUOVO CIMENTO A, V111, P365
[10]   INTEGRATION BY PARTS - THE ALGORITHM TO CALCULATE BETA-FUNCTIONS IN 4-LOOPS [J].
CHETYRKIN, KG ;
TKACHOV, FV .
NUCLEAR PHYSICS B, 1981, 192 (01) :159-204