Invasion percolation with temperature and the nature of self-organized criticality in real systems

被引:15
作者
Gabrielli, A [1 ]
Caldarelli, G
Pietronero, L
机构
[1] Ecole Polytech, Phys Mat Condensee Lab, F-91128 Palaiseau, France
[2] Unita Roma 1 La Sapienza, INFM, I-00185 Rome, Italy
来源
PHYSICAL REVIEW E | 2000年 / 62卷 / 06期
关键词
D O I
10.1103/PhysRevE.62.7638
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
In this paper we present a theoretical approach that allows us to describe the transition between critical and noncritical behavior when stocastic noise is introduced in extremal models with disorder. Namely, we show that the introduction of thermal noise in invasion percolation (IP) brings the system outside;the critical point. This result suggests a possible definition of self-organized criticality systems as ordinary critical systems where the critical. point corresponds to set to 0 one of the parameters. We recover both the TP and Eden models for T-->0 and T-->infinity, respectively. For small T we fmd a dynamical second-order transition with correlation length diverging when T-->0.
引用
收藏
页码:7638 / 7641
页数:4
相关论文
共 20 条
[1]   PUNCTUATED EQUILIBRIUM AND CRITICALITY IN A SIMPLE-MODEL OF EVOLUTION [J].
BAK, P ;
SNEPPEN, K .
PHYSICAL REVIEW LETTERS, 1993, 71 (24) :4083-4086
[2]   SELF-ORGANIZED CRITICALITY - AN EXPLANATION OF 1/F NOISE [J].
BAK, P ;
TANG, C ;
WIESENFELD, K .
PHYSICAL REVIEW LETTERS, 1987, 59 (04) :381-384
[3]   Surface effects in invasion percolation [J].
Cafiero, R ;
Caldarelli, G ;
Gabrielli, A .
PHYSICAL REVIEW E, 1997, 56 (02) :R1291-R1294
[4]   Irrelevance of spatial correlations in models with extremal dynamics [J].
Cafiero, R ;
Gabrielli, A ;
Marsili, M .
PHYSICAL REVIEW E, 1997, 55 (06) :7745-7748
[5]   Mean field theory for ordinary and hot sandpiles [J].
Caldarelli, G .
PHYSICA A, 1998, 252 (3-4) :295-307
[6]   Hot sandpiles [J].
Caldarelli, G ;
Maritan, A ;
Vendruscolo, M .
EUROPHYSICS LETTERS, 1996, 35 (07) :481-485
[7]   THE STOCHASTIC GEOMETRY OF INVASION PERCOLATION [J].
CHAYES, JT ;
CHAYES, L ;
NEWMAN, CM .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1985, 101 (03) :383-407
[8]   Self-organized criticality as an absorbing-state phase transition [J].
Dickman, R ;
Vespignani, A ;
Zapperi, S .
PHYSICAL REVIEW E, 1998, 57 (05) :5095-5105
[9]  
EDEN M, UNPUB
[10]   Comment on the run time statistics in models of growth in disordered media [J].
Gabrielli, A ;
Marsili, M ;
Cafiero, R ;
Pietronero, L .
JOURNAL OF STATISTICAL PHYSICS, 1996, 84 (3-4) :889-893