The effects of microscopic tissue parameters on the diffusion weighted magnetic resonance imaging experiment

被引:183
作者
Norris, DG [1 ]
机构
[1] Max Planck Inst Cognit Neurosci, D-04103 Leipzig, Germany
关键词
magnetic resonance imaging; diffusion imaging; perfusion imaging; functional magnetic resonance; ischemia; diffusion anisotropy; mechanisms of diffusion contrast;
D O I
10.1002/nbm.682
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
This review examines the way in which microscopic tissue parameters can affect MR experiments which are sensitive to diffusion. The interaction between the intra- and extravascular as well as that between the intra-and extracellular spaces is examined. Susceptibility gradients due to the presence of deoxyhemoglobin can cause diffusion-induced signal losses which are significant in functional magnetic resonance experiments, particularly at higher main magnetic field strengths. This is also true of the fast response that manifests itself as an early negative signal change in functional magnetic resonance experiments. The fields surrounding paramagnetic vessels are described and the way in which diffusion in these fields contributes to functional signal changes is examined. Flow in the capillary bed can be a confounding factor in experiments which aim to examine the diffusion characteristics of extravascular water. It is potentially also a method for assessing capillary perfusion. The intravoxel incoherent motion experiment is described in terms of how significantly this effect can influence diffusion attenuation curves from water. The major models for describing water diffusion in tissue are presented, as are the main experimental results that have contributed to an understanding of the mechanisms of diffusion contrast, The widely accepted view that changes in the diffusion characteristics are caused by a shift of water to the intracellular space and a concomitant change in extracellular tortuosity is examined critically. More recent experiments that indicate that a reduction in the intracellular diffusion may occur simultaneously with the cell swelling are described and their compatibility with existing models discussed. Copyright (C) 2001 John Wiley & Sons, Ltd.
引用
收藏
页码:77 / 93
页数:17
相关论文
共 143 条
[1]   ANALYSIS AND CORRECTION OF MOTION ARTIFACTS IN-DIFFUSION WEIGHTED IMAGING [J].
ANDERSON, AW ;
GORE, JC .
MAGNETIC RESONANCE IN MEDICINE, 1994, 32 (03) :379-387
[2]   WATER DIFFUSION PERMEABILITY OF HUMAN ERYTHROCYTES STUDIES BY A PULSED GRADIENT NMR TECHNIQUE [J].
ANDRASKO, J .
BIOCHIMICA ET BIOPHYSICA ACTA, 1976, 428 (02) :304-311
[3]   Non-mono-exponential attenuation of water and N-acetyl aspartate signals due to diffusion in brain tissue [J].
Assaf, Y ;
Cohen, Y .
JOURNAL OF MAGNETIC RESONANCE, 1998, 131 (01) :69-85
[4]   EFFECTS OF BIOPHYSICAL AND PHYSIOLOGICAL-PARAMETERS ON BRAIN ACTIVATION-INDUCED R(2)ASTERISK AND R(2) CHANGES - SIMULATIONS USING A DETERMINISTIC DIFFUSION-MODEL [J].
BANDETTINI, PA ;
WONG, EC .
INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY, 1995, 6 (2-3) :133-152
[5]   Comparative MR imaging study of brain maturation in kittens with T1, T2, and the trace of the diffusion tensor [J].
Baratti, C ;
Barnett, AS ;
Pierpaoli, C .
RADIOLOGY, 1999, 210 (01) :133-142
[6]   QUANTITATIVE PROTON SPECTROSCOPY AND HISTOLOGY OF A CANINE BRAIN-TUMOR MODEL [J].
BARKER, PB ;
BLACKBAND, SJ ;
CHATHAM, JC ;
SOHER, BJ ;
SAMPHILIPO, MA ;
MAGEE, CA ;
HILTON, JD ;
STRANDBERG, JD ;
ANDERSON, JH .
MAGNETIC RESONANCE IN MEDICINE, 1993, 30 (04) :458-464
[7]   A simplified method to measure the diffusion tensor from seven MR images [J].
Basser, PJ ;
Pierpaoli, C .
MAGNETIC RESONANCE IN MEDICINE, 1998, 39 (06) :928-934
[8]   MR DIFFUSION TENSOR SPECTROSCOPY AND IMAGING [J].
BASSER, PJ ;
MATTIELLO, J ;
LEBIHAN, D .
BIOPHYSICAL JOURNAL, 1994, 66 (01) :259-267
[9]   Inferring microstructural features and the physiological state of tissues from diffusion-weighted images [J].
Basser, PJ .
NMR IN BIOMEDICINE, 1995, 8 (7-8) :333-344
[10]   ESTIMATION OF THE EFFECTIVE SELF-DIFFUSION TENSOR FROM THE NMR SPIN-ECHO [J].
BASSER, PJ ;
MATTIELLO, J ;
LEBIHAN, D .
JOURNAL OF MAGNETIC RESONANCE SERIES B, 1994, 103 (03) :247-254