In vitro protein complex formation with cytoskeleton-anchoring domain of occludin identified by limited proteolysis

被引:17
作者
Peng, BH
Lee, JC
Campbell, GA
机构
[1] Univ Texas, Med Branch, Dept Pathol, Galveston, TX 77555 USA
[2] Univ Texas, Med Branch, Dept Human Biol Chem & Genet, Galveston, TX 77555 USA
关键词
D O I
10.1074/jbc.M302782200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Occludin is an essential membrane protein component of cellular tight junctions, participating in both cell-cell adhesion in the paracellular space and anchoring of the junctional complex to the cytoskeleton. The latter function is accomplished through binding of the C-terminal cytoplasmic region to scaffolding proteins that mediate binding to cytoskeletal actin. We isolated a structural domain from both the bacterial-expressed C-terminal cytoplasmic region of human occludin and native cellular occludin, extracted from epithelial (Madin-Darby canine kidney) or endothelial ( human brain) cells, by limited proteolysis with trypsin. This human occludin domain contains the last 119 amino acids as identified by N-terminal sequencing and peptide mass fingerprinting using matrix-assisted laser desorption ionization-time of flight mass spectrometry. Based on the sequence and secondary structure prediction, this domain contains 4 of 5 alpha-helices in the C-terminal region and is linked to the fourth membrane-spanning region by a loosely structured tethering polypeptide. Comparison of circular dichroism spectra of recombinant proteins corresponding to the entire C-terminal region versus only the binding domain region also supports the interpretation that the helical structural elements are concentrated in that domain. Co-immunoprecipitation of this domain with ZO-2 demonstrated preservation of the specificity of the scaffolding protein-binding function, and binding studies with immobilized ZO-2 suggest the presence of multiple ZO-2 binding sites in this domain. These results provide a basis for development of a structural model of the ZO-binding site that can be used to investigate regulation of tight junction anchoring by intracellular signaling events.
引用
收藏
页码:49644 / 49651
页数:8
相关论文
共 37 条
[1]   Interspecies diversity of the occludin sequence: cDNA cloning of human, mouse, dog, and rat-kangaroo homologues [J].
AndoAkatsuka, Y ;
Saitou, M ;
Hirase, T ;
Kishi, M ;
Sakakibara, A ;
Itoh, M ;
Yonemura, S ;
Furuse, M ;
Tsukita, S .
JOURNAL OF CELL BIOLOGY, 1996, 133 (01) :43-47
[2]   The tight junction protein ZO-2 contains three PDZ ((P)under-barSD-95/(d)under-bariscs-large/(Z)under-barO-1) domains and an alternatively spliced region [J].
Beatch, M ;
Jesaitis, LA ;
Gallin, WJ ;
Goodenough, DA ;
Stevenson, BR .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (42) :25723-25726
[3]   The domain organization and properties of individual domains of DNA topoisomerase V, a type 1B topoisomerase with DNA repair activities [J].
Belova, GI ;
Prasad, R ;
Nazimov, IV ;
Wilson, SH ;
Slesarev, AI .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (07) :4959-4965
[4]   Differential perturbation of intersubunit and interdomain communications by glycine 141 mutation in Escherichia coli CRP [J].
Cheng, XD ;
Lee, JC .
BIOCHEMISTRY, 1998, 37 (01) :51-60
[5]   JPred: a consensus secondary structure prediction server [J].
Cuff, JA ;
Clamp, ME ;
Siddiqui, AS ;
Finlay, M ;
Barton, GJ .
BIOINFORMATICS, 1998, 14 (10) :892-893
[6]   A PROTEIN SEQUENATOR [J].
EDMAN, P ;
BEGG, G .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 1967, 1 (01) :80-&
[7]   The tight junction protein ZO-1 establishes a link between the transmembrane protein occludin and the actin cytoskeleton [J].
Fanning, AS ;
Jameson, BJ ;
Jesaitis, LA ;
Anderson, JM .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (45) :29745-29753
[8]   OCCLUDIN - A NOVEL INTEGRAL MEMBRANE-PROTEIN LOCALIZING AT TIGHT JUNCTIONS [J].
FURUSE, M ;
HIRASE, T ;
ITOH, M ;
NAGAFUCHI, A ;
YONEMURA, S ;
TSUKITA, S ;
TSUKITA, S .
JOURNAL OF CELL BIOLOGY, 1993, 123 (06) :1777-1788
[9]   Conversion of Zonulae occludentes from tight to leaky strand type by introducing claudin-2 into Madin-Darby canine kidney I cells [J].
Furuse, M ;
Furuse, K ;
Sasaki, H ;
Tsukita, S .
JOURNAL OF CELL BIOLOGY, 2001, 153 (02) :263-272
[10]   Claudin-1 and -2: Novel integral membrane proteins localizing at tight junctions with no sequence similarity to occludin [J].
Furuse, M ;
Fujita, K ;
Hiiragi, T ;
Fujimoto, K ;
Tsukita, S .
JOURNAL OF CELL BIOLOGY, 1998, 141 (07) :1539-1550