Promoter structure and transcriptional activation with chromatin templates assembled in vitro -: A single Gal4-VP16 dimer binds to chromatin or to DNA with comparable affinity

被引:24
作者
Pazin, MJ
Hermann, JW
Kadonaga, JT
机构
[1] Univ Calif San Diego, Dept Biol, La Jolla, CA 92093 USA
[2] Univ Calif San Diego, Ctr Mol Genet, La Jolla, CA 92093 USA
[3] Massachusetts Gen Hosp E, Cutaneous Biol Res Ctr, Charlestown, MA 02129 USA
关键词
D O I
10.1074/jbc.273.51.34653
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
To gain a better understanding of the role of chromatin in the regulation of transcription by RNA polymerase II, we examined the relation between promoter structure and the ability of Gal4-VP16 to function with chromatin templates assembled in vitro. First, to investigate whether there are synergistic interactions among multiple bound factors, we studied promoter constructions containing one or five Gal4 sites and found that a single recognition site is sufficient for Gal4-VP16 to bind to chromatin, to induce nucleosome rearrangement, and to activate transcription. Notably, we observed that Gal4-VP16 binds to a single site in chromatin with affinity comparable with that which it binds to naked DNA, even in the absence of ATP-dependent nucleosome remodeling activity. Second, to explore the relation between translational nucleosome positioning and transcriptional activation, we analyzed a series of promoter constructions in which nucleosomes were positioned by Gal4-VP16 at different locations relative to the RNA start site. These experiments revealed that the positioning of a nucleosome over the RNA start site is not an absolute barrier to transcriptional activation. Third, to determine the contribution of core promoter elements to transcriptional activation with chromatin templates, we tested the ability of Gal4-VP16 to activate transcription with TATA box-versus DPE-driven core promoters and found that the TATA box is not required to achieve transcriptional activation by Gal4-VP16 with chromatin templates. These results suggest that a single protomer of a strong activator is able to bind to chromatin, to, induce nucleosome remodeling, and to activate transcription in conjunction with a broad range of chromatin structures and core promoter elements.
引用
收藏
页码:34653 / 34660
页数:8
相关论文
共 67 条
[1]  
Armstrong JA, 1996, MOL CELL BIOL, V16, P5634
[2]   REGULATED EXPRESSION OF THE BETA-GLOBIN GENE LOCUS IN SYNTHETIC NUCLEI [J].
BARTON, MC ;
EMERSON, BM .
GENES & DEVELOPMENT, 1994, 8 (20) :2453-2465
[3]   Special HATs for special occasions: Linking histone acetylation to chromatin assembly and gene activation [J].
Brownell, JE ;
Allis, CD .
CURRENT OPINION IN GENETICS & DEVELOPMENT, 1996, 6 (02) :176-184
[4]  
Bulger M., 1994, METH MOL G, V5, P241
[5]   The downstream core promoter element, DPE, is conserved from Drosophila to humans and is recognized by TAF(II)60 of Drosophila [J].
Burke, TW ;
Kadonaga, JT .
GENES & DEVELOPMENT, 1997, 11 (22) :3020-3031
[6]   Drosophila TFIID binds to a conserved downstream basal promoter element that is present in many TATA-box-deficient promoters [J].
Burke, TW ;
Kadonaga, JT .
GENES & DEVELOPMENT, 1996, 10 (06) :711-724
[7]  
BURKE TW, 1998, IN PRESS COLD SPRING, V63
[8]   The yeast SWI-SNF complex facilitates binding of a transcriptional activator to nucleosomal sites in vivo [J].
Burns, LG ;
Peterson, CL .
MOLECULAR AND CELLULAR BIOLOGY, 1997, 17 (08) :4811-4819
[9]   AN AMINO-TERMINAL FRAGMENT OF GAL4 BINDS DNA AS A DIMER [J].
CAREY, M ;
KAKIDANI, H ;
LEATHERWOOD, J ;
MOSTASHARI, F ;
PTASHNE, M .
JOURNAL OF MOLECULAR BIOLOGY, 1989, 209 (03) :423-432
[10]   ACTIVATION OF YEAST POLYMERASE-II TRANSCRIPTION BY HERPESVIRUS VP16 AND GAL4 DERIVATIVES INVITRO [J].
CHASMAN, DI ;
LEATHERWOOD, J ;
CAREY, M ;
PTASHNE, M ;
KORNBERG, RD .
MOLECULAR AND CELLULAR BIOLOGY, 1989, 9 (11) :4746-4749