Variable electronic coupling in phenylacetylene dendrimers:: The role of forster, dexter, and charge-transfer interactions

被引:116
作者
Thompson, AL [1 ]
Gaab, KM [1 ]
Xu, JJ [1 ]
Bardeen, CJ [1 ]
Martínez, TJ [1 ]
机构
[1] Univ Illinois, Dept Chem, Urbana, IL 61801 USA
关键词
D O I
10.1021/jp030953u
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A combination of theory and experiment is used to identify a novel variable excitonic coupling in a series of building blocks for small phenylacetylene dendrons. Systematic changes in the experimental emission spectra, radiative lifetimes, and polarization anisotropies as the number of meta-conjugated branches increases provide evidence for a qualitative change in the electronic structure in the relaxed excited state. The excited state electronic structure is investigated theoretically using ab initio CASSCF and CASPT2 calculations, which indicate the presence of large electronic coupling in the emitting geometry that is not seen for the absorbing geometry of the same molecules. The changes in electronic structure that occur upon excited-state relaxation can be understood in terms of a variable excitonic coupling between the phenylactylene branches, which takes these molecules from the weak coupling to the strong coupling regime as they relax on the excited state. The origin of this geometry-dependent coupling is investigated through the interpretation of ab initio calculations in terms of Forster, Dexter, and through-bond charge-transfer interactions. We find that the change in the coupling arises primarily from an increase in the through-bond or charge-transfer component of the coupling, despite the absence of large changes in charge distribution. A theoretical comparison of meta-versus para-substituted phenylacetylenes clarifies why this effect is so pronounced in the meta-substituted molecules.
引用
收藏
页码:671 / 682
页数:12
相关论文
共 71 条
[1]   Light-harvesting dendrimers [J].
Adronov, A ;
Fréchet, JMJ .
CHEMICAL COMMUNICATIONS, 2000, (18) :1701-1710
[2]   Light harvesting and energy transfer in laser-dye-labeled poly(aryl ether) dendrimers [J].
Adronov, A ;
Gilat, SL ;
Fréchet, JMJ ;
Ohta, K ;
Neuwahl, FVR ;
Fleming, GR .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2000, 122 (06) :1175-1185
[3]   Nature of disorder and inter-complex energy transfer in LH2 at room temperature: A three pulse photon echo peak shift study [J].
Agarwal, R ;
Rizvi, AH ;
Prall, BS ;
Olsen, JD ;
Hunter, CN ;
Fleming, GR .
JOURNAL OF PHYSICAL CHEMISTRY A, 2002, 106 (33) :7573-7578
[4]   2ND-ORDER PERTURBATION-THEORY WITH A CASSCF REFERENCE FUNCTION [J].
ANDERSSON, K ;
MALMQVIST, PA ;
ROOS, BO ;
SADLEJ, AJ ;
WOLINSKI, K .
JOURNAL OF PHYSICAL CHEMISTRY, 1990, 94 (14) :5483-5488
[5]  
[Anonymous], MOLPRO VERSION 2002
[6]   Geometric versus energetic competition in light harvesting by dendrimers [J].
Bar-Haim, A ;
Klafter, J .
JOURNAL OF PHYSICAL CHEMISTRY B, 1998, 102 (10) :1662-1664
[7]   Interchain vs. intrachain energy transfer in acceptor-capped conjugated polymers [J].
Beljonne, D ;
Pourtois, G ;
Silva, C ;
Hennebicq, E ;
Herz, LM ;
Friend, RH ;
Scholes, GD ;
Setayesh, S ;
Müllen, K ;
Brédas, JL .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (17) :10982-10987
[8]   Identification of the light-absorbing states in tolane with potential relevance to self-similar phenylacetylene dendrimers [J].
Borst, DR ;
Chou, SG ;
Pratt, DW .
CHEMICAL PHYSICS LETTERS, 2001, 343 (3-4) :289-295
[9]   Multireference perturbation theory for large restricted and selected active space reference wave functions [J].
Celani, P ;
Werner, HJ .
JOURNAL OF CHEMICAL PHYSICS, 2000, 112 (13) :5546-5557
[10]   Extended dipole model for aggregates of dye molecules [J].
Czikklely, V. ;
Forsterling, H. D. ;
Kuhn, H. .
CHEMICAL PHYSICS LETTERS, 1970, 6 (03) :207-210