The role of the unfolded protein response in the heart

被引:112
作者
Glembotski, Christopher C. [1 ,2 ]
机构
[1] San Diego State Univ, SDSU Heart Inst, San Diego, CA 92182 USA
[2] San Diego State Univ, Dept Biol, San Diego, CA 92182 USA
关键词
ER stress; unfolded protein response; ischemia; ischemia/reperfusion;
D O I
10.1016/j.yjmcc.2007.10.017
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
The misfolding of nascent proteins, or the unfolding of proteins after synthesis is complete, can occur in response to numerous environmental stresses, or as a result of mutations that de-stabilize protein structure. Cells have developed elaborate protein quality control systems that recognize improperly folded proteins and either refold them or facilitate their degradation. One such quality control system is the unfolded protein response, or the UPR. The UPR is a highly conserved signal transduction system that is activated when cells are subjected to conditions that alter the endoplasmic reticulum (ER) in ways that impair the folding of nascent proteins in this organelle. Recent observations indicate that in the heart, the UPR is activated during acute stresses, including ischemia/reperfusion, as well as upon longer term stresses that lead to cardiac hypertrophy and heart failure. Moreover, certain aspects of the UPR are activated during, and are required for proper heart development. This review summarizes recent studies of the UPR in the heart, focusing on the possible roles of the UPR in contributing to, or protecting from ischemia/reperfusion damage. (C) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:453 / 459
页数:7
相关论文
共 74 条
[1]   Activation of endoplasmic reticulum stress response during the development of ischemic heart disease [J].
Azfer, Asim ;
Niu, Jianli ;
Rogers, Linda M. ;
Adamski, Frances M. ;
Kolattukudy, Pappachan E. .
AMERICAN JOURNAL OF PHYSIOLOGY-HEART AND CIRCULATORY PHYSIOLOGY, 2006, 291 (03) :H1411-H1420
[2]   Glucose-regulated protein 78 (GRP78) is elevated in embryonic mouse heart and induced following hypoglycemic stress [J].
Barnes, JA ;
Smoak, IW .
ANATOMY AND EMBRYOLOGY, 2000, 202 (01) :67-74
[3]   Dynamic interaction of BiP and ER stress transducers in the unfolded-protein response [J].
Bertolotti, A ;
Zhang, YH ;
Hendershot, LM ;
Harding, HP ;
Ron, D .
NATURE CELL BIOLOGY, 2000, 2 (06) :326-332
[4]   ER stress-regulated translation increases tolerance to extreme hypoxia and promotes tumor growth [J].
Bi, MX ;
Naczki, C ;
Koritzinsky, M ;
Fels, D ;
Blais, J ;
Hu, NP ;
Harding, H ;
Novoa, I ;
Varia, M ;
Raleigh, J ;
Scheuner, D ;
Kaufman, RJ ;
Bell, J ;
Ron, D ;
Wouters, BG ;
Koumenis, C .
EMBO JOURNAL, 2005, 24 (19) :3470-3481
[5]   Protein targeting [J].
Blobel, G .
BIOSCIENCE REPORTS, 2000, 20 (05) :303-344
[6]   The protective and destructive roles played by molecular chaperones during ERAD (endoplasmic-reticulum-associated degradation) [J].
Brodsky, Jeffrey L. .
BIOCHEMICAL JOURNAL, 2007, 404 :353-363
[7]   IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA [J].
Calfon, M ;
Zeng, HQ ;
Urano, F ;
Till, JH ;
Hubbard, SR ;
Harding, HP ;
Clark, SG ;
Ron, D .
NATURE, 2002, 415 (6867) :92-96
[8]   RAT GENE ENCODING THE 78-KDA GLUCOSE-REGULATED PROTEIN GRP78 - ITS REGULATORY SEQUENCES AND THE EFFECT OF PROTEIN GLYCOSYLATION ON ITS EXPRESSION [J].
CHANG, SC ;
WOODEN, SK ;
NAKAKI, T ;
KIM, YK ;
LIN, AY ;
KUNG, L ;
ATTENELLO, JW ;
LEE, AS .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1987, 84 (03) :680-684
[9]   TRANSCRIPTIONAL INDUCTION OF GENES ENCODING ENDOPLASMIC-RETICULUM RESIDENT PROTEINS REQUIRES A TRANSMEMBRANE PROTEIN-KINASE [J].
COX, JS ;
SHAMU, CE ;
WALTER, P .
CELL, 1993, 73 (06) :1197-1206
[10]   Luman is capable of binding and activating transcription from the unfolded protein response element [J].
DenBoer, LM ;
Hardy-Smith, PW ;
Hogan, MR ;
Cockram, GP ;
Audas, TE ;
Lu, R .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2005, 331 (01) :113-119