Functional expression and stabilization of horseradish peroxidase by directed evolution in Saccharomyces cerevisiae

被引:109
作者
Morawski, B [1 ]
Quan, S [1 ]
Arnold, FH [1 ]
机构
[1] CALTECH, Div Chem & Chem Engn 210 41, Pasadena, CA 91125 USA
关键词
stability; peroxide; Pichia pastoris;
D O I
10.1002/bit.1149
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Biotechnology applications of horseradish peroxidase (HRP) would benefit from access to tailor-made variants with greater specific activity, lower K-m for peroxide, and higher thermostability. Starting with a mutant that is functionally expressed in Saccharomyces cerevisiae, we used random mutagenesis, recombination, and screening to identify HRP-C mutants that are more active and stable to incubation in hydrogen peroxide at 50 degreesC. A single mutation (N175S) in the HRP active site was found to improve thermal stability. Introducing this mutation into an HRP variant evolved for higher activity yielded HRP 13A7-N175S, whose half-life at 60 degreesC and pH 7.0 is three times that of wild-type (recombinant) HRP and a commercially available HRP preparation from Sigma (St. Louis, MO). The variant is also more stable in the presence of H2O2, SDS, salts (NaCl and urea), and at different pH values. Furthermore, this variant is more active towards a variety of small organic substrates frequently used in diagnostic applications. Site-directed mutagenesis to replace each of the four methionine residues in HRP (M83, M181, M281, M284) with isoleucine revealed no mutation that significantly increased the enzyme's stability to hydrogen peroxide. (C) 2001 John Wiley & Sons, Inc.
引用
收藏
页码:99 / 107
页数:9
相关论文
共 32 条
[1]  
APITZ A, 2000, ASM ANN M LOS ANG
[2]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
[3]   Directed evolution of a fungal peroxidase [J].
Cherry, JR ;
Lamsa, MH ;
Schneider, P ;
Vind, J ;
Svendsen, A ;
Jones, A ;
Pedersen, AH .
NATURE BIOTECHNOLOGY, 1999, 17 (04) :379-384
[4]   Recent biotechnological developments in the use of peroxidases [J].
Colonna, S ;
Gaggero, N ;
Richelmi, C ;
Pasta, P .
TRENDS IN BIOTECHNOLOGY, 1999, 17 (04) :163-168
[5]   CHROMOGENIC SUBSTRATES FOR HORSERADISH-PEROXIDASE [J].
CONYERS, SM ;
KIDWELL, DA .
ANALYTICAL BIOCHEMISTRY, 1991, 192 (01) :207-211
[6]  
Dunford H. B., 1991, PEROXIDASES CHEM BIO, VII, P1
[7]   Crystal structure of horseradish peroxidase C at 2.15 angstrom resolution [J].
Gajhede, M ;
Schuller, DJ ;
Henriksen, A ;
Smith, AT ;
Poulos, TL .
NATURE STRUCTURAL BIOLOGY, 1997, 4 (12) :1032-1038
[8]   STUDIES ON THE TRANSFORMATION OF INTACT YEAST-CELLS BY THE LIAC/S-DNA/PEG PROCEDURE [J].
GIETZ, RD ;
SCHIESTL, RH ;
WILLEMS, AR ;
WOODS, RA .
YEAST, 1995, 11 (04) :355-360
[9]   Directed evolution of a thermostable esterase [J].
Giver, L ;
Gershenson, A ;
Freskgard, PO ;
Arnold, FH .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (22) :12809-12813
[10]   CALCIUM-RELATED PROPERTIES OF HORSERADISH-PEROXIDASE [J].
HASCHKE, RH ;
FRIEDHOFF, JM .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1978, 80 (04) :1039-1042