Satellite-based carbon stock estimation for bamboo forest with a non-linear partial least square regression technique

被引:52
作者
Du, Huaqiang [1 ,2 ]
Zhou, Guomo [1 ,2 ]
Ge, Hongli [1 ,2 ]
Fan, Wenyi [3 ]
Xu, Xiaojun [1 ,2 ]
Fan, Weiliang [1 ,2 ]
Shi, Yongjun [1 ,2 ]
机构
[1] Zhejiang A&F Univ, Zhejiang Prov Key Lab Carbon Cycling Forest Ecosy, Linan 311300, Peoples R China
[2] Zhejiang A&F Univ, Sch Environm Sci & Technol, Linan 311300, Peoples R China
[3] NE Forestry Univ, Forest coll, Harbin 150040, Heilongjiang Pr, Peoples R China
关键词
LANDSAT TM DATA; BIOMASS ESTIMATION; ABOVEGROUND BIOMASS; MOSO BAMBOO; STRATEGY; IMAGERY; ETM+;
D O I
10.1080/01431161.2011.603379
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
This article explores a non-linear partial least square (NLPLS) regression method for bamboo forest carbon stock estimation based on Landsat Thematic Mapper (TM) data. Two schemes, leave-one-out (LOO) cross validation (scheme 1) and split sample validation (scheme 2), are used to build models. For each scheme, the NLPLS model is compared to a linear partial least square (LPLS) regression model and multivariant linear model based on ordinary least square (LOLS). This research indicates that an optimized NLPLS regression mode can substantially improve the estimation accuracy of Moso bamboo (Phyllostachys heterocycla var. pubescens) carbon stock, and it provides a new method for estimating biophysical variables by using remotely sensed data.
引用
收藏
页码:1917 / 1933
页数:17
相关论文
共 36 条
[1]  
[Anonymous], 2012, The Jackknife and Bootstrap
[2]  
Cai Jin-ding, 2006, Advanced Technology of Electrical Engineering and Energy, V25, P15
[3]   Mapping Mediterranean scrub with satellite imagery: biomass estimation and spectral behaviour [J].
Calvao, T ;
Palmeirim, JM .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 2004, 25 (16) :3113-3126
[4]  
Cao MK, 2004, SCI CHINA D S2, V34, P1
[5]   Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors [J].
Chander, Gyanesh ;
Markham, Brian L. ;
Helder, Dennis L. .
REMOTE SENSING OF ENVIRONMENT, 2009, 113 (05) :893-903
[6]   Biomass estimation and uncertainty analysis based on CBERS-02 CCD camera data and field measurement [J].
Chen, LF ;
Gao, YH ;
Cheng, Y ;
Wei, Z ;
Xiao, Q ;
Liu, XH ;
Yu, T ;
Liu, QJ ;
Gu, XF ;
Tian, GL .
SCIENCE IN CHINA SERIES E-TECHNOLOGICAL SCIENCES, 2005, 48 :116-128
[7]  
[陈先刚 CHEN XianGang], 2008, [生态学报, Acta Ecologica Sinica], V28, P5218
[8]   Non-parametric and parametric methods using satellite images for estimating growing stock volume in alpine and Mediterranean forest ecosystems [J].
Chirici, Gherardo ;
Barbati, Anna ;
Corona, Piermaria ;
Marchetti, Marco ;
Travaglini, Davide ;
Maselli, Fabio ;
Bertini, Roberta .
REMOTE SENSING OF ENVIRONMENT, 2008, 112 (05) :2686-2700
[9]   An improved strategy for regression of biophysical variables and Landsat ETM+ data [J].
Cohen, WB ;
Maiersperger, TK ;
Gower, ST ;
Turner, DP .
REMOTE SENSING OF ENVIRONMENT, 2003, 84 (04) :561-571
[10]   Above-ground biomass assessment of Mediterranean forests using airborne imaging spectrometry: the DAIS Peyne experiment [J].
De Jong, SM ;
Pebesma, EJ ;
Lacaze, B .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 2003, 24 (07) :1505-1520