Developmental expression and substrate specificities of alfalfa caffeic acid 3-O-methyltransferase and caffeoyl coenzyme A 3-O-methyltransferase in relation to lignification

被引:118
作者
Inoue, K [1 ]
Sewalt, VJH [1 ]
Ballance, GM [1 ]
Ni, WT [1 ]
Stürzer, C [1 ]
Dixon, RA [1 ]
机构
[1] Samuel Roberts Noble Fdn Inc, Div Plant Biol, Ardmore, OK 73401 USA
关键词
D O I
10.1104/pp.117.3.761
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
The biosynthesis of monolignols can potentially occur via two parallel pathways involving free acids or their coenzyme A (CoA) esters. Caffeic acid 3-O-methyltransferase (COMT) and caffeoyl CoA 3-O-methyltransferase (CCOMT) catalyze functionally identical reactions in these two pathways, resulting in the formation of mono- or dimethoxylated lignin precursors. The activities of the two enzymes increase from the first to the sixth internode in stems of alfalfa (Medicago sativa L.), preceding the deposition of lignin. Alfalfa CCOMT is highly similar at the amino acid sequence level to the CCOMT from parsley, although it contains a six-amino acid insertion near the N terminus. Transcripts encoding both COMT and CCOMT are primarily localized to vascular tissue in alfalfa stems. Alfalfa CCOMT expressed in Escherichia coli catalyzes O-methylation of caffeoyl and 5-hydroxyferuloyl CoA, with preference for caffeoyl CoA. It has low activity against the free acids. COMT expressed in E. coli is active against both caffeic and 5-hydroxyferulic acids, with preference for the fatter compound. Surprisingly, very little extractable O-methyltransferase activity versus 5-hydroxyferuloyl CoA is present in alfalfa stem internodes, in which relative O-methyltransferase activity against 5-hydroxyferulic acid increases with increasing maturity, correlating with increased lignin methoxyl content.
引用
收藏
页码:761 / 770
页数:10
相关论文
共 52 条
[1]   HISTOLOGICAL AND PHYSICAL FACTORS AFFECTING DIGESTIBILITY OF FORAGES [J].
AKIN, DE .
AGRONOMY JOURNAL, 1989, 81 (01) :17-25
[2]   CELL-WALL COMPOSITION AND DIGESTIBILITY OF ALFALFA STEMS AND LEAVES [J].
ALBRECHT, KA ;
WEDIN, WF ;
BUXTON, DR .
CROP SCIENCE, 1987, 27 (04) :735-741
[3]   ALTERED LIGNIN COMPOSITION IN TRANSGENIC TOBACCO EXPRESSING O-METHYLTRANSFERASE SEQUENCES IN SENSE AND ANTISENSE ORIENTATION [J].
ATANASSOVA, R ;
FAVET, N ;
MARTZ, F ;
CHABBERT, B ;
TOLLIER, MT ;
MONTIES, B ;
FRITIG, B ;
LEGRAND, M .
PLANT JOURNAL, 1995, 8 (04) :465-477
[4]  
Baker SM, 1996, HOLZFORSCHUNG, V50, P573
[5]   SYNTHESIS OF LIGNIN MODEL SUBSTANCES - 5-HYDROXYVANILLIN AND 5-HYDROXYACETOGUAIACONE [J].
BANERJEE, SK ;
PEPPER, JM ;
MANOLOPOULO, M .
CANADIAN JOURNAL OF CHEMISTRY, 1962, 40 (11) :2175-+
[6]  
Boudet AM, 1996, MOL BREEDING, V2, P25
[7]   CDNA CLONING, SEQUENCE-ANALYSIS AND SEASONAL EXPRESSION OF LIGNIN-BISPECIFIC CAFFEIC ACID 5-HYDROXYFERULIC ACID O-METHYLTRANSFERASE OF ASPEN [J].
BUGOS, RC ;
CHIANG, VLC ;
CAMPBELL, WH .
PLANT MOLECULAR BIOLOGY, 1991, 17 (06) :1203-1215
[8]   LIGNIN CONSTITUENTS AND CELL-WALL DIGESTIBILITY OF GRASS AND LEGUME STEMS [J].
BUXTON, DR ;
RUSSELL, JR .
CROP SCIENCE, 1988, 28 (03) :553-558
[9]   Variation in lignin content and composition - Mechanism of control and implications for the genetic improvement of plants [J].
Campbell, MM ;
Sederoff, RR .
PLANT PHYSIOLOGY, 1996, 110 (01) :3-13
[10]   AN ARABIDOPSIS MUTANT DEFECTIVE IN THE GENERAL PHENYLPROPANOID PATHWAY [J].
CHAPPLE, CCS ;
VOGT, T ;
ELLIS, BE ;
SOMERVILLE, CR .
PLANT CELL, 1992, 4 (11) :1413-1424