Sensing Pressure Distribution on a Lower-Limb Exoskeleton Physical Human-Machine Interface

被引:83
作者
De Rossi, Stefano Marco Maria [1 ]
Vitiello, Nicola [1 ]
Lenzi, Tommaso [1 ]
Ronsse, Renaud [2 ]
Koopman, Bram [3 ]
Persichetti, Alessandro [1 ]
Vecchi, Fabrizio [1 ]
Ijspeert, Auke Jan [2 ]
van der Kooij, Herman [3 ]
Carrozza, Maria Chiara [1 ]
机构
[1] Scuola Super Sant Anna, ARTS Lab, I-56025 Pontedera, Pi, Italy
[2] Ecole Polytech Fed Lausanne, Inst Bioengn, Biorobot Lab, CH-1015 Lausanne, Switzerland
[3] Univ Twente, Biomech Engn Lab, Inst Biomed Technol & Tech Med MIRA, NL-7500 EA Enschede, Netherlands
关键词
human-robot interaction; physical human-machine interface; distributed force sensor; lower-limb exoskeleton; LEG EXOSKELETON; ROBOT; REHABILITATION; WALKING; DESIGN; SYSTEM;
D O I
10.3390/s110100207
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
A sensory apparatus to monitor pressure distribution on the physical human-robot interface of lower-limb exoskeletons is presented. We propose a distributed measure of the interaction pressure over the whole contact area between the user and the machine as an alternative measurement method of human-robot interaction. To obtain this measure, an array of newly-developed soft silicone pressure sensors is inserted between the limb and the mechanical interface that connects the robot to the user, in direct contact with the wearer's skin. Compared to state-of-the-art measures, the advantage of this approach is that it allows for a distributed measure of the interaction pressure, which could be useful for the assessment of safety and comfort of human-robot interaction. This paper presents the new sensor and its characterization, and the development of an interaction measurement apparatus, which is applied to a lower-limb rehabilitation robot. The system is calibrated, and an example its use during a prototypical gait training task is presented.
引用
收藏
页码:207 / 227
页数:21
相关论文
共 29 条
[1]   Robot Assisted Gait Training With Active Leg Exoskeleton (ALEX) [J].
Banala, Sai K. ;
Kim, Seok Hun ;
Agrawal, Sunil K. ;
Scholz, John P. .
IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2009, 17 (01) :2-8
[2]  
BERGAMASCO M, 1994, IEEE INT CONF ROBOT, P1449, DOI 10.1109/ROBOT.1994.351286
[3]   An atlas of physical human-robot interaction [J].
De Santis, Agostino ;
Siciliano, Bruno ;
De Luca, Alessandro ;
Bicchi, Antonio .
MECHANISM AND MACHINE THEORY, 2008, 43 (03) :253-270
[4]  
DEROSSI SMM, 2010, P INT C IEEE ENG MED
[5]   Evaluation of a Virtual Model Control for the selective support of gait functions using an exoskeleton [J].
Ekkelenkamp, R. ;
Veltink, Peter ;
Stramigioli, Stefano ;
van der Kooij, H. .
2007 IEEE 10TH INTERNATIONAL CONFERENCE ON REHABILITATION ROBOTICS, VOLS 1 AND 2, 2007, :693-699
[6]   A human-exoskeleton interface utilizing electromyography [J].
Fleischer, Christian ;
Hommel, Guenter .
IEEE TRANSACTIONS ON ROBOTICS, 2008, 24 (04) :872-882
[7]  
*GEN EL CO, 1968, S681060 GEN EL CO
[8]  
GONZALEZ J, 1999, P 4 S FOOTW BIOM CAN, P48
[9]   The atomic fortress that time forgot [J].
Guizzo, E .
IEEE SPECTRUM, 2005, 42 (04) :42-49
[10]   Robotic orthosis Lokomat: A rehabilitation and research tool [J].
Jezernik, S ;
Colombo, G ;
Keller, T ;
Frueh, H ;
Morari, M .
NEUROMODULATION, 2003, 6 (02) :108-115