Base excision repair of 8-hydroxyguanine protects DNA from endogenous oxidative stress

被引:204
作者
Boiteux, S [1 ]
Radicella, JP [1 ]
机构
[1] CEA Radiobiol Mol & Cellulaire, DSV, Dept Radiobiol & Radiopathol, UMR 217 CNRS, F-92265 Fontenay Aux Roses, France
关键词
DNA repair; 8-hydroxyguanine; endogenous oxidative stress; mutagenesis and carcinogenesis;
D O I
10.1016/S0300-9084(99)80039-X
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
A particularly important stress for all cells is the one produced by reactive oxygen species (ROS) that are formed as a byproduct of endogenous metabolism or the exposure to environmental oxidizing agents. An oxidatively damaged guanine, 8-hydroxyguanine (8-OH-G), is abundantly produced in DNA exposed to ROS. The biological relevance of this kind of DNA damage has been unveiled by the study of two mutator genes in E, coli, fpg and mutY. Both genes code for DNA glycosylases that cooperate to prevent the mutagenic effects of 8-OH-G. Inactivation of any of those two genes leads to a spontaneous mutator phenotype characterized by the exclusive increase in G:C to T:A transversions. in the simple eukaryote Saccharomyces cerevisiae, the OGG1 gene encodes an 8-OH-G DNA glycosylase which is the functional homolog of the bacterial fpg gene product. Moreover, the inactivation of OGG1 in yeast creates a mutator phenotype that is also specific for the generation of G:C to T:A transversions. The presence of such system in mammals has been confirmed by the cloning of the OGG1 gene coding for a human homolog of the yeast enzyme. Human cells also possess a MutY homolog encoded by the MYH gene. Analysis of the human OGG1 gene and its transcripts in normal and tumoral tissues reveals alternative splicing, polymorphisms and somatic mutations. The aim of this review is to summarize recent findings dealing with the biochemical properties and the biological functions of 8-OH-G DNA glycosylases in bacterial, yeast, insect and mammalian cells. These results point to 8-OH-G as an endogenous source of mutations and to its likely involvement in the process of carcinogenesis. (C) Societe francaise de biochimie et biologie moleculaire / Elsevier, Paris.
引用
收藏
页码:59 / 67
页数:9
相关论文
共 59 条
[1]  
Aburatani H, 1997, CANCER RES, V57, P2151
[2]   Cloning of a human homolog of the yeast OGG1 gene that is involved in the repair of oxidative DNA damage [J].
Arai, K ;
Morishita, K ;
Shinmura, K ;
Kohno, T ;
Kim, SR ;
Nohmi, T ;
Taniwaki, M ;
Ohwada, S ;
Yokota, J .
ONCOGENE, 1997, 14 (23) :2857-2861
[3]   Purification, characterization, gene cloning, and expression of Saccharomyces cerevisiae redoxyendonuclease, a homolog of Escherichia coli endonuclease III [J].
Augeri, L ;
Lee, YM ;
Barton, AB ;
Doetsch, PW .
BIOCHEMISTRY, 1997, 36 (04) :721-729
[4]   Oxidative decay of DNA [J].
Beckman, KB ;
Ames, BN .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (32) :19633-19636
[5]   REPAIR OF 8-HYDROXYGUANINE IN DNA BY MAMMALIAN N-METHYLPURINE-DNA GLYCOSYLASE [J].
BESSHO, T ;
ROY, R ;
YAMAMOTO, K ;
KASAI, H ;
NISHIMURA, S ;
TANO, K ;
MITRA, S .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1993, 90 (19) :8901-8904
[6]   Opposite base-dependent reactions of a human base excision repair enzyme on DNA containing 7,8-dihydro-8-oxoguanine and abasic sites [J].
Bjoras, M ;
Luna, L ;
Johnson, B ;
Hoff, E ;
Haug, T ;
Rognes, T ;
Seeberg, E .
EMBO JOURNAL, 1997, 16 (20) :6314-6322
[7]  
Boiteux S., 1997, BASE EXCISION REPAIR, P31
[8]  
BOITEUX S, 1998, IN PRESS FREE RAD RE
[9]  
Cadet J, 1997, Rev Physiol Biochem Pharmacol, V131, P1
[10]   Mutations in OGG1, a gene involved in the repair of oxidative DNA damage, are found in human lung and kidney tumours [J].
Chevillard, S ;
Radicella, JP ;
Levalois, C ;
Lebeau, J ;
Poupon, MF ;
Oudard, S ;
Dutrillaux, B ;
Boiteux, S .
ONCOGENE, 1998, 16 (23) :3083-3086