Virus-templated iridium oxide-gold hybrid nanowires for electrochromic application

被引:45
作者
Nam, Yoon Sung [1 ]
Park, Heechul [2 ,3 ]
Magyar, Andrew P. [2 ]
Yun, Dong Soo [2 ,3 ]
Pollom, Thomas S., Jr. [1 ]
Belcher, Angela M. [1 ,2 ,3 ]
机构
[1] MIT, Dep Biol Engn, Cambridge, MA 02139 USA
[2] MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA
[3] MIT, David H Koch Inst Integrat Canc Res, Cambridge, MA 02139 USA
关键词
FILMS; TRANSPARENT; ELECTRODES; MECHANISM; OXIDATION; DEVICES;
D O I
10.1039/c2nr30115f
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A highly porous electrode comprised of biologically templated iridium oxide-gold (IrO2-Au) hybrid nanowires is introduced for electrochromic applications. A filamentous M13 virus is genetically engineered to display IrO2-binding peptides on the viral surface and used as a template for the self-assembly of IrO2 nanoclusters into a nanowire. The open porous morphology of the prepared nanowire film facilitates ion transport. Subsequently, the redox kinetics of the IrO2 nanowires seems to be limited by the electric resistance of the nanowire film. To increase the electron mobility in the nanowires, gold nanoparticles are chemically linked to the virus prior to the IrO2 mineralization, forming a gold nanostring structure along the long axis of the virus. The resulting IrO2-Au hybrid nanowires exhibit a switching time of 35 ms for coloration and 25 ms for bleaching with a transmission change of about 30.5% at 425 nm. These values represent almost an order of magnitude faster switching responses than those of an IrO2 nanowire film having the similar optical contrast. This work shows that genetically engineered viruses can serve as versatile templates to co-assemble multiple functional molecules, enabling control of the electrochemical properties of nanomaterials.
引用
收藏
页码:3405 / 3409
页数:5
相关论文
共 33 条
[1]   Multicolored electrochromism polymers: Structures and devices [J].
Argun, AA ;
Aubert, PH ;
Thompson, BC ;
Schwendeman, I ;
Gaupp, CL ;
Hwang, J ;
Pinto, NJ ;
Tanner, DB ;
MacDiarmid, AG ;
Reynolds, JR .
CHEMISTRY OF MATERIALS, 2004, 16 (23) :4401-4412
[2]   ELECTROCHROMISM OF HEAT-TREATED ANODIC IRIDIUM OXIDE-FILMS IN ACIDIC, NEUTRAL, AND ALKALINE-SOLUTIONS [J].
BENI, G ;
SHAY, JL .
APPLIED PHYSICS LETTERS, 1978, 33 (07) :567-568
[3]   Nanocrystalline electrochromic displays [J].
Bonhôte, P ;
Gogniat, E ;
Campus, F ;
Walder, L ;
Grätzel, M .
DISPLAYS, 1999, 20 (03) :137-144
[4]   OXYGEN ELECTRODE .5. ENHANCEMENT OF CHARGE CAPACITY OF AN IRIDIUM SURFACE IN ANODIC REGION [J].
BUCKLEY, DN ;
BURKE, LD .
JOURNAL OF THE CHEMICAL SOCIETY-FARADAY TRANSACTIONS I, 1975, 71 (07) :1447-1459
[5]   Fast electrochemistry of conductive polymer nanotubes: Synthesis, mechanism, and application [J].
Cho, Seung Il ;
Lee, Sang Bok .
ACCOUNTS OF CHEMICAL RESEARCH, 2008, 41 (06) :699-707
[6]   Nanotube-based ultrafast electrochromic display [J].
Cho, SI ;
Kwon, WJ ;
Choi, SJ ;
Kim, P ;
Park, SA ;
Kim, J ;
Son, SJ ;
Xiao, R ;
Kim, SH ;
Lee, SB .
ADVANCED MATERIALS, 2005, 17 (02) :171-+
[7]  
Dang XN, 2011, NAT NANOTECHNOL, V6, P377, DOI [10.1038/NNANO.2011.50, 10.1038/nnano.2011.50]
[8]   Biofabrication methods for the patterned assembly and synthesis of viral nanotemplates [J].
Gerasopoulos, K. ;
McCarthy, M. ;
Banerjee, P. ;
Fan, X. ;
Culver, J. N. ;
Ghodssi, R. .
NANOTECHNOLOGY, 2010, 21 (05)
[9]   ELECTROCHROMISM IN ANODIC IRIDIUM OXIDE-FILMS .2. PH EFFECTS ON CORROSION STABILITY AND THE MECHANISM OF COLORATION AND BLEACHING [J].
GOTTESFELD, S ;
MCINTYRE, JDE .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1979, 126 (05) :742-750
[10]  
Gottesfeld S., 1978, APPL PHYS LETT, V33, P3