Fundamental Theory of Piezotronics

被引:472
作者
Zhang, Yan [1 ]
Liu, Ying [1 ]
Wang, Zhong Lin [1 ]
机构
[1] Georgia Inst Technol, Sch Mat Sci & Engn, Atlanta, GA 30332 USA
关键词
SINGLE ZNO NANOWIRE; NANOPIEZOTRONICS; NANOGENERATORS; TRANSPORT; DEVICES;
D O I
10.1002/adma.201100906
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Due to polarization of ions in crystals with noncentral symmetry, such as ZnO, GaN, and InN, a piezoelectric potential (piezopotential) is created in the crystal when stress is applied. Electronics fabricated using the inner-crystal piezopotential as a gate voltage to tune or control the charge transport behavior across a metal/semiconductor interface or a p-n junction are called piezotronics. This is different from the basic design of complimentary metal oxide semiconductor (CMOS) field-effect transistors and has applications in force and pressure triggered or controlled electronic devices, sensors, microelectromechanical systems (MEMS), human-computer interfacing, nanorobotics, and touch-pad technologies. Here, the theory of charge transport in piezotronic devices is investigated. In addition to presenting the formal theoretical frame work, analytical solutions are presented for cases including metal-semiconductor contact and p-n junctions under simplified conditions. Numerical calculations are given for predicting the current-voltage characteristics of a general piezotronic transistor: metal-ZnO nanowire-metal device. This study provides important insight into the working principles and characteristics of piezotronic devices, as well as providing guidance for device design.
引用
收藏
页码:3004 / 3013
页数:10
相关论文
共 28 条
[1]  
[Anonymous], 1942, MIT RAD LAB REP
[2]  
*COMS, COMS MOD GALL SEM DI
[3]   CURRENT TRANSPORT IN METAL-SEMICONDUCTOR BARRIERS [J].
CROWELL, CR ;
SZE, SM .
SOLID-STATE ELECTRONICS, 1966, 9 (11-1) :1035-&
[4]   Electrostatic potential in a bent piezoelectric nanowire. The fundamental theory of nanogenerator and nanopiezotronics [J].
Gao, Yifan ;
Wang, Zhong Lin .
NANO LETTERS, 2007, 7 (08) :2499-2505
[5]   Equilibrium Potential of Free Charge Carriers in a Bent Piezoelectric Semiconductive Nanowire [J].
Gao, Ylfan ;
Wang, Zhong Lin .
NANO LETTERS, 2009, 9 (03) :1103-1110
[6]   Piezoelectric gated diode of a single ZnO nanowire [J].
He, Jr-Hau ;
Hsin, Cheng L. ;
Liu, Jin ;
Chen, Lih J. ;
Wang, Zhong L. .
ADVANCED MATERIALS, 2007, 19 (06) :781-+
[7]   Optimizing the Power Output of a ZnO Photocell by Piezopotential [J].
Hu, Youfan ;
Zhang, Yan ;
Chang, Yanling ;
Snyder, Robert L. ;
Wang, Zhong Lin .
ACS NANO, 2010, 4 (07) :4220-4224
[8]   Designing the Electric Transport Characteristics of ZnO Micro/Nanowire Devices by Coupling Piezoelectric and Photoexcitation Effects [J].
Hu, Youfan ;
Chang, Yanling ;
Fei, Peng ;
Snyder, Robert L. ;
Wang, Zhong Lin .
ACS NANO, 2010, 4 (02) :1234-1240
[9]  
Ikeda T., 1996, FUNDAMENTALS PIEZOEL
[10]   Polymer functionalized piezoelectric-FET as humidity/chemical nanosensors [J].
Lao, Chang Shi ;
Kuang, Qin ;
Wang, Zhong L. ;
Park, Myung-Chul ;
Deng, Yulin .
APPLIED PHYSICS LETTERS, 2007, 90 (26)