Markov chain approach to identifying Wiener systems

被引:15
作者
Zhao WenXiao [1 ,2 ]
Chen HanFu [1 ,2 ]
机构
[1] Chinese Acad Sci, AMSS, Inst Syst Sci, Key Lab Syst & Control, Beijing 100190, Peoples R China
[2] Chinese Acad Sci, Natl Ctr Math & Interdisciplinary Sci, Beijing 100190, Peoples R China
关键词
Wiener system; recursive identification; stochastic approximation; Markov chain; strong consistency; RECURSIVE-IDENTIFICATION; NONLINEAR WIENER; MODEL;
D O I
10.1007/s11432-012-4582-y
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Identification of the Wiener system composed of an infinite impulse response (IIR) linear subsystem followed by a static nonlinearity is considered. The recursive estimates for unknown coefficients of the linear subsystem and for the values of the nonlinear function at any fixed points are given by the stochastic approximation algorithms with expanding truncations (SAAWET). With the help of properties of the Markov chain connected with the linear subsystem, all estimates derived in the paper are proved to be strongly consistent. In comparison with the existing results on the topic, the method presented in the paper simplifies the convergence analysis and requires weaker conditions. A numerical example is given, and the simulation results are consistent with the theoretical analysis.
引用
收藏
页码:1201 / 1217
页数:17
相关论文
共 29 条
[1]  
[Anonymous], 1973, THEORY PROB APPL, DOI DOI 10.1137/1118033
[2]   Frequency domain identification of Wiener models [J].
Bai, EW .
AUTOMATICA, 2003, 39 (09) :1521-1530
[3]   FADING MEMORY AND THE PROBLEM OF APPROXIMATING NONLINEAR OPERATORS WITH VOLTERRA SERIES [J].
BOYD, S ;
CHUA, LO .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, 1985, 32 (11) :1150-1161
[4]  
Bussgang J. J., 1952, 216 MIT RES LAB EL
[5]  
Chen H. F., 2002, STOCHASTIC APPROXIMA
[6]  
Chen H. F., 1991, Identification and stochastic adaptive control
[7]   Recursive identification for Wiener model with discontinuous piece-wise linear function [J].
Chen, HF .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2006, 51 (03) :390-400
[8]  
Ciarlet P.G., 1989, INTRO NUMERICAL LINE, DOI DOI 10.1017/9781139171984
[9]  
Fan J., 2003, NONLINEAR TIME SERIE
[10]   Nonparametric approach to Wiener system identification [J].
Greblicki, W .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-FUNDAMENTAL THEORY AND APPLICATIONS, 1997, 44 (06) :538-545