Determinants and symmetries in 'Yetter-Drinfeld' categories

被引:11
作者
Cohen, M
Westreich, S
机构
[1] Ben Gurion Univ Negev, Dept Math & Comp Sci, IL-84105 Beer Sheva, Israel
[2] Bar Ilan Univ, Interdisciplinary Dept Social Sci, Ramat Gan, Israel
关键词
Yetter-Drinfeld category; braided monoidal category; symmetric category; the u-condition; characters;
D O I
10.1023/A:1008668314522
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A Yetter-Drinfeld category over a Hopf algebra H with a bijective antipode, is equipped with a 'braiding' which may be symmetric for some of its subcategories (e.g, when H is a triangular Hopf algebra). We prove that under an additional condition (which we term the u-condition) such symmetric subcategories completely resemble the category of vector spaces over a field k, with the ordinary 'flip' map. Consequently, when Char k = 0, one can define well behaving exterior algebras and non-commutative determinant functions.
引用
收藏
页码:267 / 289
页数:23
相关论文
共 11 条
[1]  
[Anonymous], 1969, MATH LECT NOTES SERI
[2]  
Caenepeel S., 1994, K-theory, V8, P231, DOI [10.1007/BF00960863, DOI 10.1007/BF00960863]
[3]   FROM SUPERSYMMETRY TO QUANTUM COMMUTATIVITY [J].
COHEN, M ;
WESTREICH, S .
JOURNAL OF ALGEBRA, 1994, 168 (01) :1-27
[4]  
COHEN M, 1996, ISRAEL J MATH, P1
[5]  
LAMBE LA, 1992, J ALGEBRA, V154, P228
[6]   CROSS PRODUCTS BY BRAIDED GROUPS AND BOSONIZATION [J].
MAJID, S .
JOURNAL OF ALGEBRA, 1994, 163 (01) :165-190
[7]  
PAREIGIS B, COMMUNICATION
[8]   YETTER-DRINFELD CATEGORIES ASSOCIATED TO AN ARBITRARY BIALGEBRA [J].
RADFORD, DE ;
TOWBER, J .
JOURNAL OF PURE AND APPLIED ALGEBRA, 1993, 87 (03) :259-279
[9]  
RADFORD DE, 1993, J ALGEBRA, V157, P281
[10]   GALOIS ENLARGEMENTS OF NONCOMMUTATIVE RINGS [J].
ULBRICH, KH .
COMMUNICATIONS IN ALGEBRA, 1982, 10 (06) :655-672