Random sampling, abundance-extinction dynamics and niche-filtering immigration constraints explain the generation of species richness gradients

被引:26
作者
Carnicer, Jofre [1 ,2 ]
Brotons, Lluis [3 ,4 ]
Sol, Daniel [5 ]
de Caceres, Miquel [6 ]
机构
[1] CSIC, Estac Biol Donana, Integrat Ecol Grp, E-41080 Seville, Spain
[2] Assoc Estudi & Conservacio Biodiv, CEM Biodiver, Sabadell, Spain
[3] Ctr Tecnol Forestal Catalunya, CTFC, Area Biodiversitat, Solsona, Spain
[4] Museu Zool, Inst Catala Ornitol, Barcelona, Spain
[5] Univ Autonoma Barcelona, Ctr Recerca Ecol & Aplicat Forestals, CREAF, E-08193 Barcelona, Spain
[6] Univ Barcelona, Dept Biol Vegetal, Barcelona, Spain
来源
GLOBAL ECOLOGY AND BIOGEOGRAPHY | 2008年 / 17卷 / 03期
关键词
birds; Mediterranean biome; neutral theory; niche-filtering; niche width; sampling; Spain; species richness;
D O I
10.1111/j.1466-8238.2007.00380.x
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
Aim The paradigm that species' patterns of distribution, abundance and coexistence are the result of adaptations of the species to their niches has recently been challenged by evidence that similar patterns may be generated by simple random processes. We argue here that a better understanding of macroecological patterns requires an integration of both ecological and neutral stochastic approaches. We demonstrate the utility of such an integrative approach by testing the sampling hypothesis in a species-energy relationship of forest bird species. Location A Mediterranean biome in Catalonia, Spain. Methods To test the sampling hypothesis we designed a metacommunity model that reproduces the stochastic sampling from a regional pool to predict local species richness variation. Four conceptually different sampling procedures were evaluated. Results We showed that stochastic sampling processes predicted a substantial part (over 40%) of the observed variation in species richness, but left considerable variation unexplained. This remaining variation in species richness may be better understood as the result of alternative ecological processes. First, the sampling model explained more variation in species richness when the probability that a species colonises a new locality was assumed to increase with its niche width, suggesting that ecological differences between species matter when it comes to explaining macroecological patterns. Second, extinction risk was significantly lower for species inhabiting high-energy regions, suggesting that abundance-extinction processes play a significant role in shaping species richness patterns. Main conclusions We conclude that species-energy relationships may not simply be understood as a result of either ecological or random sampling processes, but more likely as a combination of both.
引用
收藏
页码:352 / 362
页数:11
相关论文
共 64 条
[1]   A niche for neutrality [J].
Adler, Peter B. ;
HilleRisLambers, Janneke ;
Levine, Jonathan M. .
ECOLOGY LETTERS, 2007, 10 (02) :95-104
[2]   Sampling Hubbell's neutral theory of biodiversity [J].
Alonso, D ;
McKane, AJ .
ECOLOGY LETTERS, 2004, 7 (10) :901-910
[3]   The merits of neutral theory [J].
Alonso, David ;
Etienne, Rampal S. ;
McKane, Alan J. .
TRENDS IN ECOLOGY & EVOLUTION, 2006, 21 (08) :451-457
[4]   THE MEASURE OF ORDER AND DISORDER IN THE DISTRIBUTION OF SPECIES IN FRAGMENTED HABITAT [J].
ATMAR, W ;
PATTERSON, BD .
OECOLOGIA, 1993, 96 (03) :373-382
[5]  
Bell G, 2006, ECOLOGY, V87, P1378, DOI 10.1890/0012-9658(2006)87[1378:TCERTF]2.0.CO
[6]  
2
[7]   Local avian assemblages as random draws from regional pools [J].
Blackburn, TM ;
Gaston, KJ .
ECOGRAPHY, 2001, 24 (01) :50-58
[8]  
Blondel J, 2006, BIOSCIENCE, V56, P661, DOI 10.1641/0006-3568(2006)56[661:ATSOPA]2.0.CO
[9]  
2
[10]   Range size:: Disentangling current traits and phylogenetic and biogeographic factors [J].
Böhning-Gaese, K ;
Caprano, T ;
van Ewijk, K ;
Veith, M .
AMERICAN NATURALIST, 2006, 167 (04) :555-567