CONTINUOUS EEG SIGNAL ANALYSIS FOR ASYNCHRONOUS BCI APPLICATION

被引:76
作者
Hsu, Wei-Yen [1 ]
机构
[1] Taipei Med Univ, Grad Inst Biomed Informat, Taipei 110, Taiwan
关键词
Asynchronous brain-computer interface (BCI); electroencephalogram (EEG); independent component analysis (ICA); wavelet transform; fractal dimension; support vector machine (SVM); WAVELET-CHAOS METHODOLOGY; NEURAL-NETWORK; ALZHEIMERS-DISEASE; MOTOR IMAGERY; SYNCHRONIZATION; CLASSIFICATION; SEIZURE; DIAGNOSIS; DYNAMICS; MODELS;
D O I
10.1142/S0129065711002870
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this study, we propose a two-stage recognition system for continuous analysis of electroencephalogram (EEG) signals. An independent component analysis (ICA) and correlation coefficient are used to automatically eliminate the electrooculography (EOG) artifacts. Based on the continuous wavelet transform (CWT) and Student's two-sample t-statistics, active segment selection then detects the location of active segment in the time-frequency domain. Next, multiresolution fractal feature vectors (MFFVs) are extracted with the proposed modified fractal dimension from wavelet data. Finally, the support vector machine (SVM) is adopted for the robust classification of MFFVs. The EEG signals are continuously analyzed in 1-s segments, and every 0.5 second moves forward to simulate asynchronous BCI works in the two-stage recognition architecture. The segment is first recognized as lifted or not in the first stage, and then is classified as left or right finger lifting at stage two if the segment is recognized as lifting in the first stage. Several statistical analyses are used to evaluate the performance of the proposed system. The results indicate that it is a promising system in the applications of asynchronous BCI work.
引用
收藏
页码:335 / 350
页数:16
相关论文
共 74 条
[1]  
ACHARYA R, 2010, INT J NEURAL SYSTEMS, V20
[2]  
Adeli H, 2005, J ALZHEIMERS DIS, V7, P187
[3]   Alzheimer's disease: Models of computation and analysis of EEGs [J].
Adeli, H ;
Ghosh-Dastidar, S ;
Dadmehr, N .
CLINICAL EEG AND NEUROSCIENCE, 2005, 36 (03) :131-140
[4]   Analysis of EEG records in an epileptic patient using wavelet transform [J].
Adeli, H ;
Zhou, Z ;
Dadmehr, N .
JOURNAL OF NEUROSCIENCE METHODS, 2003, 123 (01) :69-87
[5]   A spatio-temporal wavelet-chaos methodology for EEG-based diagnosis of Alzheimer's disease [J].
Adeli, Hojjat ;
Ghosh-Dastidar, Samanwoy ;
Dadmehr, Nahid .
NEUROSCIENCE LETTERS, 2008, 444 (02) :190-194
[6]   A wavelet-chaos methodology for analysis of EEGs and EEG subbands to detect seizure and epilepsy [J].
Adeli, Hojjat ;
Ghosh-Dastidar, Samanwoy ;
Dadmehr, Nahid .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2007, 54 (02) :205-211
[7]  
AHMADLOU M, 2011, CLIN EEG NEUROSCIENC, V42
[8]   Fractality and a Wavelet-Chaos-Neural Network Methodology for EEG-Based Diagnosis of Autistic Spectrum Disorder [J].
Ahmadlou, Mehran ;
Adeli, Hojjat ;
Adeli, Amir .
JOURNAL OF CLINICAL NEUROPHYSIOLOGY, 2010, 27 (05) :328-333
[9]   Wavelet-Synchronization Methodology: A New Approach for EEG-Based Diagnosis of ADHD [J].
Ahmadlou, Mehran ;
Adeli, Hojjat .
CLINICAL EEG AND NEUROSCIENCE, 2010, 41 (01) :1-10
[10]  
[Anonymous], ALZHEIMER DIS ASS DI