Beyond the flow decomposition barrier

被引:291
作者
Goldberg, AV [1 ]
Rao, S [1 ]
机构
[1] NEC Res Inst, Princeton, NJ 08540 USA
关键词
combinatorial optimization; maximum flows;
D O I
10.1145/290179.290181
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
We introduce a new approach to the maximum flow problem. This approach is based on assigning are lengths based on the residual flow value and the residual are capacities. Our approach leads to an O(min(n(2/3), m(1/2))m log(n(2)/m) log U) time bound for a network with n vertices, m arcs, and integral are capacities in the range [1,..., U]. This is a fundamental improvement over the previous time bounds. We also improve bounds for the Gomory-Hu tree problem, the parametric flow problem, and the approximate s-t cut problem.
引用
收藏
页码:783 / 797
页数:15
相关论文
共 45 条
[1]   A FAST AND SIMPLE ALGORITHM FOR THE MAXIMUM FLOW PROBLEM [J].
AHUJA, RK ;
ORLIN, JB .
OPERATIONS RESEARCH, 1989, 37 (05) :748-759
[2]   IMPROVED TIME-BOUNDS FOR THE MAXIMUM FLOW PROBLEM [J].
AHUJA, RK ;
ORLIN, JB ;
TARJAN, RE .
SIAM JOURNAL ON COMPUTING, 1989, 18 (05) :939-954
[3]   GENERATING PSEUDO-RANDOM PERMUTATIONS AND MAXIMUM FLOW ALGORITHMS [J].
ALON, N .
INFORMATION PROCESSING LETTERS, 1990, 35 (04) :201-204
[4]  
ANDERSON RJ, 1993, NETWORK FLOWS MATCHI, P1
[5]  
Benczur A. A., 1996, Proceedings of the Twenty-Eighth Annual ACM Symposium on the Theory of Computing, P47, DOI 10.1145/237814.237827
[6]   An o(n(3))-time maximum-flow algorithm [J].
Cheriyan, J ;
Hagerup, T ;
Mehlhorn, K .
SIAM JOURNAL ON COMPUTING, 1996, 25 (06) :1144-1170
[7]  
CHERKASKY RV, 1977, MATH METHODS SOLUTIO, V7, P112
[8]  
CHERKASSKY BV, 1995, LECT NOTES COMPUTER, P157
[9]  
Dantzig G.B., 1951, Activity analysis of production and allocation, P359
[10]  
Derigs U., 1989, ZOR, Methods and Models of Operations Research, V33, P383, DOI 10.1007/BF01415937