共 47 条
Structural basis of membrane invagination by F-BAR domains
被引:440
作者:
Frost, Adam
[1
,3
]
Perera, Rushika
[2
]
Roux, Aurelien
[2
,4
,5
,6
]
Spasov, Krasimir
[1
]
Destaing, Olivier
[2
,4
,5
,6
]
Egelman, Edward H.
[7
]
De Camilli, Pietro
[2
,3
,4
,5
,6
]
Unger, Vinzenz M.
[1
,3
]
机构:
[1] Yale Univ, Sch Med, Dept Mol Biophys & Biochem, New Haven, CT 06510 USA
[2] Yale Univ, Sch Med, Dept Cell Biol, New Haven, CT 06510 USA
[3] Yale Univ, Sch Med, Interdept Neurosci Program, New Haven, CT 06510 USA
[4] Yale Univ, Sch Med, Howard Hughes Med Inst, New Haven, CT 06510 USA
[5] Yale Univ, Sch Med, Kavli Inst Neurosci, New Haven, CT 06510 USA
[6] Yale Univ, Sch Med, Program Cellular Neurosci Neurodegenerat & Repair, New Haven, CT 06510 USA
[7] Univ Virginia, Dept Biochem & Mol Genet, Charlottesville, VA 22908 USA
来源:
关键词:
D O I:
10.1016/j.cell.2007.12.041
中图分类号:
Q5 [生物化学];
Q7 [分子生物学];
学科分类号:
071010 ;
081704 ;
摘要:
BAR superfamily domains shape membranes through poorly understood mechanisms. We solved structures of F-BAR modules bound to flat and curved bilayers using electron (cryo) microscopy. We show that membrane tubules form when F-BARs polymerize into helical coats that are held together by lateral and tip-to-tip interactions. On gel-state membranes or after mutation of residues along the lateral interaction surface, F-BARs adsorb onto bilayers via surfaces other than their concave face. We conclude that membrane binding is separable from membrane bending, and that imposition of the module's concave surface forces fluid-phase bilayers to bend locally. Furthermore, exposure of the domain's lateral interaction surface through a change in orientation serves as the crucial trigger for assembly of the helical coat and propagation of bilayer bending. The geometric constraints and sequential assembly of the helical lattice explain how F-BAR and classical BAR domains segregate into distinct microdomains, and provide insight into the spatial regulation of membrane invagination.
引用
收藏
页码:807 / 817
页数:11
相关论文