Asymptotic expansions and numerical algorithms of eigenvalues and eigenfunctions of the Dirichlet problem for second order elliptic equations in perforated domains

被引:111
作者
Cao, LQ [1 ]
Cui, JZ [1 ]
机构
[1] Chinese Acad Sci, Acad Math & Syst Sci, Inst Computat Math & Sci Engn Comp, Beijing 100080, Peoples R China
关键词
D O I
10.1007/s00211-003-0468-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the spectral properties of Dirichlet problems for second order elliptic equation with rapidly oscillating coefficients in a perforated domain. The asymptotic expansions of eigenvalues and eigenfunctions for this kind of problem are obtained, and the multiscale finite element algorithms and numerical results are proposed.
引用
收藏
页码:525 / 581
页数:57
相关论文
共 28 条
[1]  
Adams R., 1975, Sobolev space
[2]  
Bensoussan A., 1978, ASYMPTOTIC ANAL PERI
[3]  
BOURGET JF, 1979, LECT NOTES MATH, V705, P330
[4]  
CAO LQ, 1998, CHINESE J NUMER MATH, V20, P25
[5]  
CIARLET P. G., 1978, The Finite Element Method for Elliptic Problems
[6]  
Cioranescu D., 1999, An Introduction to Homogenization
[7]  
CIORANESCU D, 1998, HOMOGENIZATION RETIC
[8]  
COURANT R, 1953, METHODS MATH PHYSICS, V1
[9]  
CUI JZ, 1996, J COMPUT MATH, V18, P157
[10]  
EGOROV E, 1996, SPECTRAL THEORY ELLI