Evolution of neural crest and placodes: amphioxus as a model for the ancestral vertebrate?

被引:62
作者
Holland, LZ [1 ]
Holland, ND [1 ]
机构
[1] Univ Calif San Diego, Scripps Inst Oceanog, La Jolla, CA 92093 USA
关键词
sensory cells; protochordates; tunicates; olfactory placode; adenohypophysis; pituitary;
D O I
10.1046/j.1469-7580.2001.19910085.x
中图分类号
R602 [外科病理学、解剖学]; R32 [人体形态学];
学科分类号
100101 ;
摘要
Recent studies of protochordates (ascidian tunicates and amphioxus) have given insights into possible ancestors of 2 of the characteristic features of the vertebrate head: neural crest and placodes. The neural crest probably evolved from cells on either side of the neural plate-epidermis boundary in a protochordate ancestral to the vertebrates. In amphioxus, homologues of several vertebrate neural crest marker genes (BMP2/4, Pax3/7, Msx, Dll and Snail) are expressed at the edges of the neural plate and/or adjacent nonneural ectoderm. Some of these markers are also similarly expressed in tunicates. In protochordates, however, these cells, unlike vertebrate neural crest, neither migrate as individuals through embryonic tissues nor differentiate into a wide spectrum of cell types. Therefore, while the protochordate ancestor of the vertebrates probably had the beginnings of a genetic programme for neural crest formation, this programme was augmented in the earliest vertebrates to attain definitive neural crest. Clear homologues of vertebrate placodes are lacking in protochordates. However, both amphioxus and tunicates have ectodermal sensory cells. In tunicates these are all primary neurons, sending axons to the central nervous system, while in amphioxus, the ectodermal sensory cells include both primary neurons and secondary neurons lacking axons. Comparisons of developmental gene expression suggest that the anterior ectoderm in amphioxus may be homologous to the vertebrate olfactory placode, the only vertebrate placode with primary, not secondary, neurons. Similarly, biochemical, morphological and gene expression data suggest that amphioxus and tunicates also have homologues of the adenohypophysis, one of the few vertebrate structures derived from nonneurogenic placodes. In contrast, the origin of the other vertebrate placodes is very uncertain.
引用
收藏
页码:85 / 98
页数:14
相关论文
共 131 条
[1]  
AKIMENKO MA, 1994, J NEUROSCI, V14, P3475
[2]   THE ORAL PAPILLA OF THE LANCELET LARVA (BRANCHIOSTOMA-LANCEOLATUM) (CEPHALOCHORDATA) [J].
ANDERSSON, E ;
OLSSON, R .
ACTA ZOOLOGICA, 1989, 70 (01) :53-56
[3]   PRIMARY SENSORY CELLS IN THE SKIN OF AMPHIOXUS (BRANCHIOSTOMA-LANCEOLATUM (P)) [J].
BAATRUP, E .
ACTA ZOOLOGICA, 1981, 62 (03) :147-157
[4]   ON THE STRUCTURE OF THE CORPUSCLES OF DE QUATREFAGES (BRANCHIOSTOMA-LANCEOLATUM (P)) [J].
BAATRUP, E .
ACTA ZOOLOGICA, 1982, 63 (01) :39-44
[5]   The origins of the neural crest. Part I: Embryonic induction [J].
Baker, CVH ;
Bronner-Fraser, M .
MECHANISMS OF DEVELOPMENT, 1997, 69 (1-2) :3-11
[6]   The origins of the neural crest. Part II: an evolutionary perspective [J].
Baker, CVH ;
Bronner-Fraser, M .
MECHANISMS OF DEVELOPMENT, 1997, 69 (1-2) :13-29
[7]   Expression of Pax-3 in the lateral neural plate is dependent on a Wnt-mediated signal from posterior nonaxial mesoderm [J].
Bang, AG ;
Papalopulu, N ;
Goulding, MD ;
Kintner, C .
DEVELOPMENTAL BIOLOGY, 1999, 212 (02) :366-380
[8]   EMBRYONIC ORIGIN OF AMPHIBIAN TASTE-BUDS [J].
BARLOW, LA ;
NORTHCUTT, RG .
DEVELOPMENTAL BIOLOGY, 1995, 169 (01) :273-285
[9]  
Begbie J, 1999, DEVELOPMENT, V126, P895
[10]   A ROSTRAL SENSORY MECHANISM IN OIKOPLEURA-DIOICA (APPENDICULARIA) [J].
BOLLNER, T ;
HOLMBERG, K ;
OLSSON, R .
ACTA ZOOLOGICA, 1986, 67 (04) :235-241