Bond additivity corrections for G3B3 and G3MP2B3 quantum chemistry methods

被引:73
作者
Anantharaman, B [1 ]
Melius, CF [1 ]
机构
[1] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA
关键词
D O I
10.1021/jp045883l
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We have developed bond additivity correction (BAC) procedures for the G3-based quantum chemistry methods, G3B3 and G3MP2B3. We denote these procedures as BAC-G3B3 and BAC-G3MP2B3. We apply the procedures to compounds containing atoms from the first three rows of the periodic table including H, B, C, N, O, F, Al, Si, P, S, and Cl atoms. The BAC procedure applies atomic, molecular, and pairwise bond corrections to theoretical heats of formation of molecules. The BAC-G3B3 and BAC-G3MP2B3 procedures require parameters for each atom type but not for each bond type. These parameters have been obtained by minimizing the error between the BAC-G3B3 and BAC-G3MP2B3 predictions and the experimental heats of formation for a 155 molecule reference set, containing open and closed shell molecules representing various functional groups, multireference configurations, isomers, and degrees of saturation. As compared to former BAC-MP4, BAC-G2, and BAC-hybrid methods, BAC-G3B3 provides better agreement with experiment for a wider range of chemical moieties, including highly oxidized species involving SO(x)s, NO(x)s, PO(x)s, and halogens. The BAC-G3B3 and BAC-G3MP2B3 procedures are applied to an extended test suite involving 273 compounds. We assess the overall quality of BAC-G3B3 with experiments and other theoretical approaches. For the reference set, the average error for the BAC-G3B3 results is 0.44 kcal/mol as compared to 0.82 kcal/mol for the raw G3B3. For the extended test set, the average error for the BAC-G3B3 results is 0.91 kcal/mol as compared to 1.38 kcal/mol for the raw G3B3. As compared to the other BAC procedures, the improved predictive capability of BAC-G3B3 and BAC-G3MP2B3 procedures is, to a large extent, due to the improved quality of G3-based methods resulting in much smaller BAC correction terms.
引用
收藏
页码:1734 / 1747
页数:14
相关论文
共 42 条
[1]   GENERAL ANALYSIS OF VARIOUS METHODS OF ATOMS IN MOLECULES [J].
ARAI, T .
REVIEWS OF MODERN PHYSICS, 1960, 32 (02) :370-400
[2]   Gaussian-3 theory using density functional geometries and zero-point energies [J].
Baboul, AG ;
Curtiss, LA ;
Redfern, PC ;
Raghavachari, K .
JOURNAL OF CHEMICAL PHYSICS, 1999, 110 (16) :7650-7657
[3]  
Barin I, 1973, THERMOCHEMICAL PROPE
[4]   Heats of formation for POn and POnH (n=1-3) [J].
Bauschlicher, CW .
JOURNAL OF PHYSICAL CHEMISTRY A, 1999, 103 (50) :11126-11129
[5]  
Chase M., 1998, NIST JANAF THEMOCHEM, V4th edn
[6]  
CHASE MW, 1985, J PHYS CHEM REF DATA, V14, P1
[7]  
Cox J.D., 1984, CODATA KEY VALUES TH, V1
[8]   Gaussian-3 (G3) theory for molecules containing first and second-row atoms [J].
Curtiss, LA ;
Raghavachari, K ;
Redfern, PC ;
Rassolov, V ;
Pople, JA .
JOURNAL OF CHEMICAL PHYSICS, 1998, 109 (18) :7764-7776
[9]   Assessment of Gaussian-3 and density functional theories for a larger experimental test set [J].
Curtiss, LA ;
Raghavachari, K ;
Redfern, PC ;
Pople, JA .
JOURNAL OF CHEMICAL PHYSICS, 2000, 112 (17) :7374-7383
[10]   GAUSSIAN-2 THEORY USING REDUCED MOLLER-PLESSET ORDERS [J].
CURTISS, LA ;
RAGHAVACHARI, K ;
POPLE, JA .
JOURNAL OF CHEMICAL PHYSICS, 1993, 98 (02) :1293-1298