Heterogeneous multiscale FEM for diffusion problems on rough surfaces

被引:49
作者
Abdulle, A
Schwab, C
机构
[1] Univ Basel, Dept Math, CH-4051 Basel, Switzerland
[2] ETH, Seminar Appl Math, CH-8092 Zurich, Switzerland
关键词
rough surfaces; multiscale finite element method; diffusion problems;
D O I
10.1137/030600771
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present a finite element method for the numerical solution of diffusion problems on rough surfaces. The problem is transformed to an elliptic homogenization problem in a two dimensional parameter domain with a rapidly oscillating diffusion tensor and source term. The finite element method is based on the heterogeneous multiscale methods of E and Engquist [Commun. Math. Sci., 1 (2003), pp. 87-132]. For periodic surface roughness of scale e and amplitude O(epsilon), the method converges at a robust rate, i.e., independent of epsilon, to the homogenized solution.
引用
收藏
页码:195 / 220
页数:26
相关论文
共 24 条
[1]   Finite difference heterogeneous multi-scale method for homogenization problems [J].
Abdulle, A ;
Weinan, E .
JOURNAL OF COMPUTATIONAL PHYSICS, 2003, 191 (01) :18-39
[2]   Real porous media: Local geometry and transports [J].
Adler, PM ;
Thovert, JF ;
Bekri, S ;
Yousefian, F .
JOURNAL OF ENGINEERING MECHANICS-ASCE, 2002, 128 (08) :829-839
[3]  
[Anonymous], NUMERICAL SOLUTION P
[4]   DIFFUSION IN THE PRESENCE OF TOPOLOGICAL DISORDER [J].
BAUSCH, R ;
SCHMITZ, R ;
TURSKI, LA .
PHYSICAL REVIEW LETTERS, 1994, 73 (18) :2382-2385
[5]  
Bensoussan A., 1978, ASYMPTOTIC ANAL PERI
[6]  
Braess D., 1997, FINITE ELEMENTS
[7]  
Ciarlet P. G., 1972, MATH FDN FINITE ELEM, P409
[8]  
CIARLET P. G., 1978, The Finite Element Method for Elliptic Problems
[9]  
Cioranescu D., 1999, An Introduction to Homogenization
[10]   Correlation of topographic surface and volume data from three-dimensional electron microscopy [J].
Dimmeler, E ;
Marabini, R ;
Tittmann, P ;
Gross, H .
JOURNAL OF STRUCTURAL BIOLOGY, 2001, 136 (01) :20-29