State-dependent accessibility and electrostatic potential in the channel of the acetylcholine receptor -: Inferences from rates of reaction of thiosulfonates with substituted cysteines in the M2 segment of the α subunit

被引:100
作者
Pascual, JM
Karlin, A
机构
[1] Columbia Univ, Coll Phys & Surg, Ctr Mol Recognit, New York, NY 10032 USA
[2] Columbia Univ, Coll Phys & Surg, Div Pediat Neurol, New York, NY 10032 USA
关键词
conductance; gate; ion selectivity; reaction kinetics; sulfhydryl;
D O I
10.1085/jgp.111.6.717
中图分类号
Q4 [生理学];
学科分类号
071003 ;
摘要
Ion channel function depends on the chemical and physical properties and spatial arrangement of the residues that line the channel lumen and on the electrostatic potential within the lumen. We have used small, sulfhydryl-specific thiosulfonate reagents, both positively charged and neutral, to probe the environment within the acetylcholine (ACh) receptor channel. Rate constants were determined for their reactions with cysteines substituted for nine exposed residues in the second membrane-spanning segment (M2) of the alpha subunit. The largest rate constants, both in the presence and absence of ACh, were for the reactions with the cysteine substituted for alpha Thr244, near the intracellular end of the channel. In the open state of the channel, but not in the closed state, the rate constants for the reactions of the charged reagents with several substituted cysteines depended on the transmembrane electrostatic potential, and the electrical distance of these cysteines increased from the extracellular to the intracellular end of M2. Even at zero transmembrane potential, the ratios of the rate constants for the reactions of three positively charged reagents with alpha T244C, alpha L251C, and alpha L258C to the rate constant for the reaction of an uncharged reagent were much greater in the open than in the closed state. This dependence of the rate constants on reagent charge is consistent with an intrinsic electrostatic potential in the channel that is considerably more negative in the open state than in the closed state. The effects of ACh on the rate constants for the reactions of substituted Cys along the length of alpha M2, on the dependence of the rate constants on the transmembrane potential, and on the intrinsic potential support a location of a gate more intracellular than alpha Thr244.
引用
收藏
页码:717 / 739
页数:23
相关论文
共 63 条
[1]   IDENTIFICATION OF ACETYLCHOLINE-RECEPTOR CHANNEL-LINING RESIDUES IN THE ENTIRE M2 SEGMENT OF THE ALPHA-SUBUNIT [J].
AKABAS, MH ;
KAUFMANN, C ;
ARCHDEACON, P ;
KARLIN, A .
NEURON, 1994, 13 (04) :919-927
[2]  
AKABAS MH, 1994, J BIOL CHEM, V269, P14865
[3]   IDENTIFICATION OF ACETYLCHOLINE-RECEPTOR CHANNEL-LINING RESIDUES IN THE M1 SEGMENT OF THE ALPHA-SUBUNIT [J].
AKABAS, MH ;
KARLIN, A .
BIOCHEMISTRY, 1995, 34 (39) :12496-12500
[4]   ACETYLCHOLINE-RECEPTOR CHANNEL STRUCTURE PROBED IN CYSTEINE-SUBSTITUTION MUTANTS [J].
AKABAS, MH ;
STAUFFER, DA ;
XU, M ;
KARLIN, A .
SCIENCE, 1992, 258 (5080) :307-310
[5]   VOLTAGE CLAMP ANALYSIS OF ACETYLCHOLINE PRODUCED END-PLAT CURRENT FLUCTUATIONS AT FROG NEUROMUSCULAR-JUNCTION [J].
ANDERSON, CR ;
STEVENS, CF .
JOURNAL OF PHYSIOLOGY-LONDON, 1973, 235 (03) :655-691
[6]   Voltage dependence of mouse acetylcholine receptor gating: Different charge movements in di-, mono- and unliganded receptors [J].
Auerbach, A ;
Sigurdson, W ;
Chen, J ;
Akk, G .
JOURNAL OF PHYSIOLOGY-LONDON, 1996, 494 (01) :155-170
[7]  
Bruice T. W., 1982, J PROTEIN CHEM, V1, P47, DOI DOI 10.1007/BF01025550
[8]   AN OPEN-CHANNEL BLOCKER INTERACTS WITH ADJACENT TURNS OF ALPHA-HELICES IN THE NICOTINIC ACETYLCHOLINE-RECEPTOR [J].
CHARNET, P ;
LABARCA, C ;
LEONARD, RJ ;
VOGELAAR, NJ ;
CZYZYK, L ;
GOUIN, A ;
DAVIDSON, N ;
LESTER, HA .
NEURON, 1990, 4 (01) :87-95
[9]   Locating the anion-selectivity filter of the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel [J].
Cheung, M ;
Akabas, MH .
JOURNAL OF GENERAL PHYSIOLOGY, 1997, 109 (03) :289-299
[10]   TRIS+/NA+ PERMEABILITY RATIOS OF NICOTINIC ACETYLCHOLINE-RECEPTORS ARE REDUCED BY MUTATIONS NEAR THE INTRACELLULAR END OF THE M2 REGION [J].
COHEN, BN ;
LABARCA, C ;
CZYZYK, L ;
DAVIDSON, N ;
LESTER, HA .
JOURNAL OF GENERAL PHYSIOLOGY, 1992, 99 (04) :545-572