One-dimensional optical lattices and impenetrable bosons

被引:60
作者
Cazalilla, MA
机构
[1] Abdus Salam Int Ctr Theoret Phys, I-34014 Trieste, Italy
[2] DIPC, Donostia San Sebastian 20018, Spain
来源
PHYSICAL REVIEW A | 2003年 / 67卷 / 05期
关键词
D O I
10.1103/PhysRevA.67.053606
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We study the limit of large on-site repulsion of the one-dimensional Bose-Hubbard model at low densities, and derive a strong-coupling effective Hamiltonian. By taking the lattice parameter to zero, the Hamiltonian becomes a continuum model of fermions with attractive interactions. The leading corrections to the internal energy of a hard-core-boson (Tonks) gas as well as the (finite temperature) pair correlations of a strongly interacting Bose gas are calculated. We explore the possibility of realizing, in an optical lattice, a Luttinger liquid with stronger density correlations than the Tonks gas. A quantum phase transition to a charge-density-wave Mott insulator is also discussed.
引用
收藏
页数:4
相关论文
共 23 条
[1]  
ASHCROFT NW, 1976, SOLID STATE PHYS, P47
[2]   Commensurate-incommensurate transition of cold atoms in an optical lattice -: art. no. 130401 [J].
Büchler, HP ;
Blatter, G ;
Zwerger, W .
PHYSICAL REVIEW LETTERS, 2003, 90 (13) :4
[3]  
Cazalilla M. A., UNPUB
[4]   Low-energy properties of a one-dimensional system of interacting bosons with boundaries [J].
Cazalilla, MA .
EUROPHYSICS LETTERS, 2002, 59 (06) :793-799
[5]  
Cohen-Tannoudji J. D.-R. C., 1992, ATOM PHOTON INTERACT
[6]  
EFETOV KB, 1976, ZH EKSP TEOR FIZ, V42, P390
[7]  
FISHER MPA, 1989, PHYS REV B, V40, P546, DOI [10.1103/PhysRevB.40.546, 10.1063/1.38820]
[8]   Treatment of backscattering in a gas of interacting fermions confined to a one-dimensional harmonic atom trap [J].
Gao, XL ;
Gleisberg, F ;
Lochmann, F ;
Wonneberger, W .
PHYSICAL REVIEW A, 2003, 67 (02) :12
[10]   Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms [J].
Greiner, M ;
Mandel, O ;
Esslinger, T ;
Hänsch, TW ;
Bloch, I .
NATURE, 2002, 415 (6867) :39-44