Intrinsic mitochondrial dysfunction in ATM-deficient lymphoblastoid cells

被引:136
作者
Ambrose, Mark
Goldstine, Jimena V.
Gatti, Richard A.
机构
[1] Univ Calif Los Angeles, David Geffen Sch Med, Dept Pathol & Lab Med, Los Angeles, CA 90095 USA
[2] Univ Calif Los Angeles, David Geffen Sch Med, Dept Human Genet, Los Angeles, CA 90095 USA
关键词
D O I
10.1093/hmg/ddm166
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
One of the characteristic features of cells from patients with ataxia telangiectasia (A-T) is that they are in a state of continuous oxidative stress and exhibit constitutive activation of pathways that normally respond to oxidative damage. In this report, we investigated whether the oxidative stress phenotype of A-T cells might be a reflection of an intrinsic mitochondrial dysfunction. Mitotracker Red staining showed that the structural organization of mitochondria in A-T cells was abnormal compared to wild-type. Moreover, A-T cells harbored a much larger population of mitochondria with decreased membrane potential (Delta Psi) than control cells. In addition, the basal expression levels of several nuclear DNA-encoded oxidative damage responsive genes whose proteins are targeted to the mitochondria-polymerase gamma, mitochondrial topoisomerase 1, peroxiredoxin 3 and manganese superoxide dismutase-are elevated in A-T cells. Consistent with these results, we found that overall mitochondrial respiratory activity was diminished in A-T compared to wild-type cells. Treating A-T cells with the antioxidant, alpha lipoic acid (ALA), restored mitochondrial respiration rates to levels approaching those of wild-type. When wild-type cells were transfected with ATM-targeted siRNA, we observed a small but significant reduction in the respiration rates of mitochondria. Moreover, mitochondria in A-T cells induced to stably express full-length ATM, exhibited respiration rates approaching those of wild-type cells. Taken together, our results provide evidence for an intrinsic mitochondrial dysfunction in A-T cells, and implicate a requirement for ATM in the regulation of mitochondrial function.
引用
收藏
页码:2154 / 2164
页数:11
相关论文
共 55 条
[1]  
Abu-Amero KK, 2005, ARCH PATHOL LAB MED, V129, P1295
[2]   SEQUENCE AND ORGANIZATION OF THE HUMAN MITOCHONDRIAL GENOME [J].
ANDERSON, S ;
BANKIER, AT ;
BARRELL, BG ;
DEBRUIJN, MHL ;
COULSON, AR ;
DROUIN, J ;
EPERON, IC ;
NIERLICH, DP ;
ROE, BA ;
SANGER, F ;
SCHREIER, PH ;
SMITH, AJH ;
STADEN, R ;
YOUNG, IG .
NATURE, 1981, 290 (5806) :457-465
[3]   Quantitative PCR analysis of mitochondrial DNA content in patients with mitochondrial disease [J].
Bai, RK ;
Perng, CL ;
Hsu, CH ;
Wong, LJC .
MITOCHONDRIAL PATHOGENESIS: FROM GENES AND APOPTOSIS TO AGING AND DISEASE, 2004, 1011 :304-309
[4]   ATM is a cytoplasmic protein in mouse brain required to prevent lysosomal accumulation [J].
Barlow, C ;
Ribaut-Barassin, C ;
Zwingman, TA ;
Pope, AJ ;
Brown, KD ;
Owens, JW ;
Larson, D ;
Harrington, EA ;
Haeberle, AM ;
Mariani, J ;
Eckhaus, M ;
Herrup, K ;
Bailly, Y ;
Wynshaw-Boris, A .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (02) :871-876
[5]   Loss of the ataxia-telangiectasia gene product causes oxidative damage in target organs [J].
Barlow, C ;
Dennery, PA ;
Shigenaga, MK ;
Smith, MA ;
Morrow, JD ;
Roberts, LJ ;
Wynshaw-Boris, A ;
Levine, RL .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (17) :9915-9919
[6]   ATM deficiency and oxidative stress: a new dimension of defective response to DNA damage [J].
Barzilai, A ;
Rotman, G ;
Shiloh, Y .
DNA REPAIR, 2002, 1 (01) :3-25
[7]   Defect in multiple cell cycle checkpoints in ataxia-telangiectasia postirradiation [J].
Beamish, H ;
Williams, R ;
Chen, P ;
Lavin, MF .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (34) :20486-20493
[8]  
CANMAN CE, 1994, CANCER RES, V54, P5054
[9]   Production of reactive oxygen species by mitochondria - Central role of complex III [J].
Chen, Q ;
Vazquez, EJ ;
Moghaddas, S ;
Hoppel, CL ;
Lesnefsky, EJ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (38) :36027-36031
[10]   Ataxia-telangiectasia, an evolving phenotype [J].
Chun, HH ;
Gatti, RA .
DNA REPAIR, 2004, 3 (8-9) :1187-1196