A novel high-affinity inhibitor for inward-rectifier K+ channels

被引:188
作者
Jin, WL [1 ]
Lu, Z [1 ]
机构
[1] Univ Penn, Dept Physiol, Philadelphia, PA 19104 USA
关键词
D O I
10.1021/bi981178p
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Inward-rectifier K+ channels are a group of highly specialized K+ channels that accomplish a variety of important biological tasks. Inward-rectifier K+ channels differ from voltage-activated K+ channels not only functionally but also structurally. Each of the four subunits of the inward-rectifier K+ channels has only two instead of six transmembrane segments compared to the voltage-activated K+ channels. Thus far, there are no high-affinity ligands that directly target any inward-rectifier K+ channel. In the present study, we identified, purified, and synthesized a protein inhibitor of the inward-rectifier K+ channels. The inhibitor, called tertiapin, blocks a G-protein-gated channel (GIRK1/4) and the ROMK1 channel with nanomolar affinities, but a closely related channel, IRK1, is insensitive to tertiapin. Mutagenesis studies show that teritapin inhibits the channel by binding to the external end of the ion conduction pore.
引用
收藏
页码:13291 / 13299
页数:9
相关论文
共 53 条
  • [1] TOPOLOGY OF THE PORE-REGION OF A K+ CHANNEL REVEALED BY THE NMR-DERIVED STRUCTURES OF SCORPION TOXINS
    AIYAR, J
    WITHKA, JM
    RIZZI, JP
    SINGLETON, DH
    ANDREWS, GC
    LIN, W
    BOYD, J
    HANSON, DC
    SIMON, M
    DETHLEFS, B
    LEE, CL
    HALL, JE
    GUTMAN, GA
    CHANDY, KG
    [J]. NEURON, 1995, 15 (05) : 1169 - 1181
  • [2] SINGLE APAMIN-BLOCKED CA-ACTIVATED K+ CHANNELS OF SMALL CONDUCTANCE IN CULTURED RAT SKELETAL-MUSCLE
    BLATZ, AL
    MAGLEBY, KL
    [J]. NATURE, 1986, 323 (6090) : 718 - 720
  • [3] UNCOUPLING OF CARDIAC MUSCARINIC AND BETA-ADRENERGIC RECEPTORS FROM ION CHANNELS BY A GUANINE-NUCLEOTIDE ANALOG
    BREITWIESER, GE
    SZABO, G
    [J]. NATURE, 1985, 317 (6037) : 538 - 540
  • [4] Number and stoichiometry of subunits in the native atrial G-protein-gated K+ channel, IKACh
    Corey, S
    Krapivinsky, G
    Krapivinsky, L
    Clapham, DE
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (09) : 5271 - 5278
  • [5] ATRIAL G-PROTEIN-ACTIVATED K+-CHANNEL - EXPRESSION CLONING AND MOLECULAR-PROPERTIES
    DASCAL, N
    SCHREIBMAYER, W
    LIM, NF
    WANG, WZ
    CHAVKIN, C
    DIMAGNO, L
    LABARCA, C
    KIEFFER, BL
    GAVERIAUXRUFF, C
    TROLLINGER, D
    LESTER, HA
    DAVIDSON, N
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1993, 90 (21) : 10235 - 10239
  • [6] The structure of the potassium channel:: Molecular basis of K+ conduction and selectivity
    Doyle, DA
    Cabral, JM
    Pfuetzner, RA
    Kuo, AL
    Gulbis, JM
    Cohen, SL
    Chait, BT
    MacKinnon, R
    [J]. SCIENCE, 1998, 280 (5360) : 69 - 77
  • [7] INFLUENCE OF PROTEIN SURFACE-CHARGE ON THE BIMOLECULAR KINETICS OF A POTASSIUM CHANNEL PEPTIDE INHIBITOR
    ESCOBAR, L
    ROOT, MJ
    MACKINNON, R
    [J]. BIOCHEMISTRY, 1993, 32 (27) : 6982 - 6987
  • [8] K(IR)2.1 INWARD RECTIFIER K+ CHANNELS ARE REGULATED INDEPENDENTLY BY PROTEIN-KINASES AND ATP HYDROLYSIS
    FAKLER, B
    BRANDLE, U
    GLOWATZKI, E
    ZENNER, HP
    RUPPERSBERG, JP
    [J]. NEURON, 1994, 13 (06) : 1413 - 1420
  • [9] STRONG VOLTAGE-DEPENDENT INWARD RECTIFICATION OF INWARD RECTIFIER K+ CHANNELS IS CAUSED BY INTRACELLULAR SPERMINE
    FAKLER, B
    BRANDLE, U
    GLOWATZKI, E
    WEIDEMANN, S
    ZENNER, HP
    RUPPERSBERG, JP
    [J]. CELL, 1995, 80 (01) : 149 - 154
  • [10] SPERMINE AND SPERMIDINE AS GATING MOLECULES FOR INWARD RECTIFIER K+ CHANNELS
    FICKER, E
    TAGLIALATELA, M
    WIBLE, BA
    HENLEY, CM
    BROWN, AM
    [J]. SCIENCE, 1994, 266 (5187) : 1068 - 1072